MapReduce代码编程
1. Hadoop中数据类型和Java对应关系
Java类型 | Hadoop Writable类型 |
---|---|
Boolean | BooleanWritable |
Byte | ByteWritable |
Int | IntWritable |
Float | FloatWritable |
Long | LongWritable |
Double | DoubleWritable |
String | Text |
Map | MapWritable |
Array | ArrayWritable |
Null | NullWritable |
2. MapReduce编程规范
用户编写的程序分成三个部分:Mapper、Reducer和Driver。
2.1 Mapper阶段
- 用户自定义的Mapper要继承自己的父类
- Mapper的输入数据是KV对的形式(KV的类型可自定义)
- Mapper中的业务逻辑写在map()方法中
- Mapper的输出数据是KV对的形式(KV的类型可自定义)
- map()方法(MapTask进程)对每一个<K,V>调用一次
2.2 Reducer阶段
- 用户自定义的Reducer要继承自己的父类
- Reducer的输入数据类型对应Mapper的输出数据类型,也是KV
- Reducer的业务逻辑写在reduce()方法中
- ReduceTask进程对每一组相同k的<k,v>组调用一次reduce()方法
2.3 Driver阶段
相当于YARN集群的客户端,用于提交我们整个程序到YARN集群,提交的是封装了MapReduce程序相关运行参数的job对象
3. 实操WorkCount
- pom.xml文件
xml
<properties>
<maven.compiler.source>11</maven.compiler.source>
<maven.compiler.target>11</maven.compiler.target>
<maven.compiler.compilerVersion>11</maven.compiler.compilerVersion>
</properties>
<dependencies>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>3.3.6</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.12</version>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
<version>1.7.36</version>
</dependency>
<!--用于中文分词-->
<dependency>
<groupId>org.truenewx</groupId>
<artifactId>ik-analyzer-core</artifactId>
<version>5.0.1</version>
</dependency>
</dependencies>
- 在项目的src/main/resources目录下,新建文件log4j.properties:
ini
log4j.rootLogger=INFO, stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
log4j.appender.logfile=org.apache.log4j.FileAppender
log4j.appender.logfile.File=target/spring.log
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n
- 编写代码程序
java
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
@Override
protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, IntWritable>.Context context) throws IOException, InterruptedException {
// 1 获取一行,转换成分词器需要的reader对象
ByteArrayInputStream bai = new ByteArrayInputStream(value.getBytes());
Reader read = new InputStreamReader(bai);
// 2 切割
IKSegmenter iks = new IKSegmenter(read,true);
Lexeme t;
while ((t = iks.next()) != null)
{
// 3 输出
word.set(t.getLexemeText());
context.write(word, one);
}
}
java
IntWritable result = new IntWritable(0);
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException {
int sum = 0;
// 1 累加求和
for (IntWritable value : values) {
sum += value.get();
}
// 2 输出
result.set(sum);
context.write(key, result);
}
java
public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {
// 1 获取配置信息以及获取job对象
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
job.setJobName("中文计数");
// 2 关联本Driver程序的jar
job.setJarByClass(WordCountDriver.class);
// 3 关联Mapper和Reducer的jar
job.setMapperClass(WordCountMapper.class);
job.setReducerClass(WordCountReducer.class);
// 4 设置Mapper输出的kv类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
// 5 设置最终输出kv类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
// 6 设置输入和输出路径
FileInputFormat.addInputPath(job, new Path("C:\\Users\\mi\\Downloads\\斗破苍穹.txt"));
FileOutputFormat.setOutputPath(job, new Path("C:\\Users\\mi\\Downloads\\output\\"));
// 7 提交job
boolean result = job.waitForCompletion(true);
System.exit(result ? 1 : 0);
}
- 本地运行测试成功,打包上传集群环境 pom.xml添加配置
xml
<build>
<plugins>
<plugin>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.6.1</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
</configuration>
</plugin>
<plugin>
<artifactId>maven-assembly-plugin</artifactId>
<configuration>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
执行maven打包后上传Hadoop服务器:
sh
[jack@hadoop102 hadoop-3.3.6]$ hadoop jar wc.jar com.rocket.mapreduce.WordCountDriver /user/jack/input /user/jack/output