第三方集成Kafka
1. SpringBoot集成Kafka
1.1 SpringBoot 环境准备
通过Spring Initializr创建一个SpringBoot项目, 访问网址进行下载脚手架:https://start.spring.io/(如果网络不稳定,可以访问国内地址: https://start.aliyun.com/)。
勾选依赖组件:
- Web: Spring Web
- Messaging: Spring for Apache Kafka
1.2 下载后用IDEA打开
调整maven代码结构, 如图所示: 其中kafka-integration项目下面有kafka-integration-producer、kafka-integration-consumer两个子项目。kafka-integration-producer是生产者,kafka-integration-consumer是消费者接收消息 三个项目的pom.xml内容如下:
xml
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.example</groupId>
<artifactId>kafka-integration</artifactId>
<version>0.0.1-SNAPSHOT</version>
<packaging>pom</packaging>
<name>kafka-integration</name>
<description>第三方框架集成Kafka</description>
<properties>
<java.version>1.8</java.version>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
<spring-boot.version>2.7.6</spring-boot.version>
</properties>
<modules>
<module>kafka-integration-producer</module>
<module>kafka-integration-consumer</module>
</modules>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.kafka</groupId>
<artifactId>spring-kafka</artifactId>
</dependency>
</dependencies>
<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-dependencies</artifactId>
<version>${spring-boot.version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.8.1</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
<encoding>UTF-8</encoding>
</configuration>
</plugin>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<version>${spring-boot.version}</version>
</plugin>
</plugins>
</build>
</project>
xml
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>com.example</groupId>
<artifactId>kafka-integration</artifactId>
<version>0.0.1-SNAPSHOT</version>
<relativePath>../pom.xml</relativePath>
</parent>
<artifactId>kafka-integration-producer</artifactId>
<name>kafka-integration-web</name>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.kafka</groupId>
<artifactId>spring-kafka</artifactId>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.8.1</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
<encoding>UTF-8</encoding>
</configuration>
</plugin>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<version>2.7.6</version>
</plugin>
</plugins>
</build>
</project>
xml
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>com.example</groupId>
<artifactId>kafka-integration</artifactId>
<version>0.0.1-SNAPSHOT</version>
<relativePath>../pom.xml</relativePath>
</parent>
<artifactId>kafka-integration-consumer</artifactId>
<name>kafka-integration-service</name>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.kafka</groupId>
<artifactId>spring-kafka</artifactId>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.8.1</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
<encoding>UTF-8</encoding>
</configuration>
</plugin>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<version>2.7.6</version>
</plugin>
</plugins>
</build>
</project>
1.3 SpringBoot生产者
- 修改 SpringBoot 核心配置文件 application.yml, 添加生产者相关信息
yml
server:
port: 8081
spring:
kafka:
bootstrap-servers: 192.168.101.105:9092
producer:
key-serializer: org.apache.kafka.common.serialization.StringSerializer
value-serializer: org.apache.kafka.common.serialization.StringSerializer
consumer:
group-id: test555
1.5 创建Controller从浏览器接收数据, 并写入指定的Topic
java
@Controller
public class BasicController {
@Resource
KafkaTemplate kafkaTemplate;
@RequestMapping("/produceMsg")
@ResponseBody
public String hello(String msgContent) {
if(msgContent!=null){
kafkaTemplate.send("hadoop", msgContent);
return "发送成功";
}else{
return "msgContent不能为空";
}
}
}
启动生产者应用
1.6 SpringBoot消费者
修改 SpringBoot 核心配置文件 application.yml
yml
server:
port: 8080
spring:
kafka:
bootstrap-servers: 192.168.101.105:9092
consumer:
group-id: test000
key-deserializer: org.apache.kafka.common.serialization.StringDeserializer
value-deserializer: org.apache.kafka.common.serialization.StringDeserializer
1.7 创建类消费Kafka中指定Topic的数据
java
@Component
public class KafkaConsumer {
// 指定要监听的 topic
@KafkaListener(topics = "hadoop")
public void consumeTopic(String msg) { // 参数: 收到的 value
System.out.println("收到的信息: " + msg);
}
}
1.7 使用IDEA内置Http客户端功能给/produceMsg接口发送数据
发送内容如下:
POST http://localhost:8081/produceMsg
Content-Type: application/x-www-form-urlencoded
msgContent=999
查看消费端控制台:
2. Flink集成Kafka
Flink是一个在大数据开发中非常常用的组件。可以用于 Kafka 的生产者,也可以用于Flink的消费者。
2.1 Flink 环境准备
- 创建一个maven项目 flink-kafka
- 添加pom.xml配置文件
xml
<properties>
<flink.version>1.18.1</flink.version>
</properties>
<dependencies>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-java</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-clients</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-kafka</artifactId>
<version>3.1.0-1.18</version>
</dependency>
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-slf4j-impl</artifactId>
<version>2.17.2</version>
</dependency>
</dependencies>
- 将log4j.properties文件添加到 resources里面
ini
log4j.rootLogger=error, stdout,R
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss,SSS} %5p --- [%50t] %-80c(line:%5L) : %m%n
log4j.appender.R=org.apache.log4j.RollingFileAppender
log4j.appender.R.File=../log/agent.log
log4j.appender.R.MaxFileSize=1024KB
log4j.appender.R.MaxBackupIndex=1
log4j.appender.R.layout=org.apache.log4j.PatternLayout
log4j.appender.R.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss,SSS} %5p --- [%50t] %-80c(line:%6L) : %m%n
2.2 Flink 生产者
java
public static void main(String[] args) throws Exception {
// 1 初始化 flink 环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(3);
// 1 读取集合中数据
ArrayList<String> wordsList = new ArrayList<>();
wordsList.add("hello");
wordsList.add("world");
DataStream<String> stream = env.fromCollection(wordsList);
// 2 kafka 生产者配置信息
Properties properties = new Properties();
properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "hadoop105:9092");
// 3 创建 kafka 生产者
FlinkKafkaProducer<String> kafkaProducer = new FlinkKafkaProducer<>(
"hadoop",
new SimpleStringSchema(),
properties
);
// 4 生产者和 flink 流关联
stream.addSink(kafkaProducer);
// 5 执行
env.execute();
}
2.3 Flink 消费者
java
public class FlinkConsumer {
public static void main(String[] args) throws Exception {
// 1 初始化 flink 环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(3);
// 2 kafka 消费者配置信息
Properties properties = new Properties();
properties.setProperty(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "hadoop105:9092");
properties.setProperty(ConsumerConfig.GROUP_ID_CONFIG, "flink");
// 3 创建 kafka 消费者
FlinkKafkaConsumer<String> kafkaConsumer = new FlinkKafkaConsumer<>(
"hadoop",
new SimpleStringSchema(),
properties
);
// 4 消费者和 flink 流关联
env.addSource(kafkaConsumer).print();
// 4 执行
env.execute();
}
}
2.4 分别依次启动FlinkConsumer消费者、FlinkProducer生产者
观察IDEA控制台数据打印
3. Spark集成Kafka
3.1 Spark环境准备
- 创建一个maven项目spark-kafka
- 在项目spark-kafka上点击右键,Add Framework Support =>勾选 scala
- 在 main 下创建scala文件夹,并右键 Mark Directory as Sources Root=>在 scala 下创建包名为com.example.spark
- 将log4j.properties文件添加到resources里面
ini
log4j.rootLogger=error, stdout,R
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss,SSS} %5p --- [%50t] %-80c(line:%5L) : %m%n
log4j.appender.R=org.apache.log4j.RollingFileAppender
log4j.appender.R.File=../log/agent.log
log4j.appender.R.MaxFileSize=1024KB
log4j.appender.R.MaxBackupIndex=1
log4j.appender.R.layout=org.apache.log4j.PatternLayout
log4j.appender.R.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss,SSS} %5p --- [%50t] %-80c(line:%6L) : %m%n
- 项目pom.xml文件配置
xml
<dependencies>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka-0-10_2.12</artifactId>
<version>3.4.2</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.12</artifactId>
<version>3.4.2</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.12</artifactId>
<version>3.4.2</version>
</dependency>
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-slf4j-impl</artifactId>
<version>2.17.2</version>
</dependency>
</dependencies>
3.2 Spark 生产者
scala
object SparkKafkaProducer {
def main(args: Array[String]): Unit = {
// 0 kafka 配置信息
val properties = new Properties()
properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "hadoop105:9092,hadoop106:9092,hadoop107:9092")
properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, classOf[StringSerializer])
properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, classOf[StringSerializer])
// 1 创建 kafka 生产者
var producer = new KafkaProducer[String, String](properties)
// 2 发送数据
for (i <- 1 to 5) {
producer.send(new ProducerRecord[String, String]("hadoop", "jack" + i))
}
// 3 关闭资源
producer.close()
}
}
3.3 Spark 消费者
scala
object SparkKafkaConsumer {
def main(args: Array[String]): Unit = {
//1.创建 SparkConf
val sparkConf: SparkConf = new SparkConf().setAppName("SparkStreaming").setMaster("local[*]")
//2.创建 StreamingContext
val ssc = new StreamingContext(sparkConf, Seconds(3))
//3.定义 Kafka 参数:kafka 集群地址、消费者组名称、key 序列化、value 序列化
val kafkaPara: Map[String, Object] = Map[String, Object](
ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG -> "hadoop105:9092,hadoop106:9092,hadoop107:9092",
ConsumerConfig.GROUP_ID_CONFIG -> "demoGroup",
ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG -> classOf[StringDeserializer],
ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG -> classOf[StringDeserializer]
)
//4.读取 Kafka 数据创建 DStream
val kafkaDStream: InputDStream[ConsumerRecord[String, String]] =
KafkaUtils.createDirectStream[String, String](
ssc,
LocationStrategies.PreferConsistent, //优先位置
ConsumerStrategies.Subscribe[String, String](Set("hadoop"), kafkaPara) // 消费策略:(订阅多个主题,配置参数
)
//5.将每条消息的 KV 取出
val valueDStream: DStream[String] = kafkaDStream.map(record => record.value())
//6.计算 WordCount
valueDStream.print()
//7.开启任务
ssc.start()
ssc.awaitTermination()
}
}
3.4 启动SparkKafkaConsumer消费者、SparkKafkaProducer生产者
查看控制台打印结果:
4. Flume集成Kafka
Flume是一个在大数据开发中非常常用的组件。可以用于Kaka的生产者,也可以用于Flume的消费者。
4.1 Flume生产者
- 启动Kafka消费者
sh
sh kafka_3.6.2/bin/kafka-console-consumer.sh --bootstrap-server hadoop105:9092 --topic first
4.2 Flume消费者
- 启动Kafka生产者
sh
bin/kafka-console-producer.sh --bootstrap-server hadoop110:9092 --topic first
- 配置flume的Agent, 在flume的job目录下创建kafka-flume-file.conf:
ini
# 1 组件定义
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# 2 配置 source
a1.sources.r1.type = org.apache.flume.source.kafka.KafkaSource
a1.sources.r1.batchSize = 50
a1.sources.r1.batchDurationMillis = 200
a1.sources.r1.kafka.bootstrap.servers = hadoop105:9092
a1.sources.r1.kafka.topics = first
a1.sources.r1.kafka.consumer.group.id = custom.g.id
# 3 配置 channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# 4 配置 sink
a1.sinks.k1.type = logger
# 5 拼接组件
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
- 启动flume
sh
/opt/module/flume-1.11.0/bin/flume-ng agent --conf conf --conf-file /opt/module/flume-1.11.0/conf/kafka-flume-hdfs.conf --name a1 -Dflume.root.logger=INFO,LOGFILE
## 观察控制台