电商仓库建设之DWS和DWT层
前面的数据底层架构搭建好了过后,之后的工作就是写SQL了,主要是ETL工程师负责处理。
实际工作中,可能领导着急想看数据,可能倒过来开发,也就是说先处理ADS,在根据ADS的主题反过来开发DWS(按天)和DWT(累计)。DWS\DWT\ADS的创建完全取决于需求。主题和维度对应的,维度可以确定有哪些主题;而主题中具体的字段是和相关事实表对应的,相关事实表的度量值可以确定有哪些字段。
1. 业务术语
1.1 用户
用户以设备为判断标准,在移动统计中,每个独立设备认为是一个独立用户。Android系统根据IMEI号,IOS系统根据OpenUDID来标识一个独立用户,每部手机一个用户。
1.2 新增用户
首次联网使用应用的用户。如果一个用户首次打开某 APP,那这个用户定义为新增用户;卸载再安装的设备,不会被算作一次新增。新增用户包括日新增用户、周新增用户、月新增用户。
1.3 活跃用户
打开应用的用户即为活跃用户,不考虑用户的使用情况。每天一台设备打开多次会被计为一个活跃用户。
1.4 周(月)活跃用户
某个自然周(月)内启动过应用的用户,该周(月)内的多次启动只记一个活跃用户。
1.5 月活跃率
月活跃用户与截止到该月累计的用户总和之间的比例。
1.6 沉默用户
用户仅在安装当天(次日)启动一次,后续时间无再启动行为。该指标可以反映新增用户质量和用户与 APP 的匹配程度。
1.7 版本分布
不同版本的周内各天新增用户数,活跃用户数和启动次数。利于判断APP各个版本之间的优劣和用户行为习惯。
1.8 本周回流用户
上周未启动过应用,本周启动了应用的用户。
1.9 连续n周活跃用户
连续n周,每周至少启动一次。
1.10 忠诚用户
连续活跃5周以上的用户
1.11 连续活跃用户
连续 2 周及以上活跃的用户
1.12 近期流失用户
连续n(2<= n <= 4)周没有启动应用的用户。(第n+1周没有启动过)
1.13 留存用户
某段时间内的新增用户,经过一段时间后,仍然使用应用的被认作是留存用户;这部分用户占当时新增用户的比例即是留存率。
1.14 用户新鲜度
每天启动应用的新老用户比例,即新增用户数占活跃用户数的比例。
1.15 单次使用时长
每次启动使用的时间长度。
1.16 日使用时长
累计一天内的使用时间长度。
1.17 启动次数计算标准
IOS 平台应用退到后台就算一次独立的启动;Android 平台我们规定,两次启动之间的间隔小于 30 秒,被计算一次启动。用户在使用过程中,若因收发短信或接电话等退出应用30秒又再次返回应用中,那这两次行为应该是延续而非独立的,所以可以被算作一次使用行为,即一次启动。业内大多使用 30 秒这个标准,但用户还是可以自定义此时间间隔。
2. DWS层(用户行为)
DWS层数据不再采用压缩格式,避免报表和接口查询性能损失。
2.1 每日设备行为
每日设备行为,主要按照设备 id 统计。
- 建表语句
drop table if exists dws_uv_detail_daycount;
create external table dws_uv_detail_daycount
(
`mid_id` string COMMENT '设备唯一标识',
`user_id` string COMMENT '用户标识',
`version_code` string COMMENT '程序版本号',
`version_name` string COMMENT '程序版本名',
`lang` string COMMENT '系统语言',
`source` string COMMENT '渠道号',
`os` string COMMENT 'Android版本',
`area` string COMMENT '区域',
`model` string COMMENT '手机型号',
`brand` string COMMENT '手机品牌',
`sdk_version` string COMMENT 'sdkVersion',
`gmail` string COMMENT 'gmail',
`height_width` string COMMENT '屏幕宽高',
`app_time` string COMMENT '客户端日志产生时的时间',
`network` string COMMENT '网络模式',
`lng` string COMMENT '经度',
`lat` string COMMENT '纬度',
`login_count` bigint COMMENT '活跃次数'
) COMMENT'每日设备行为表'
partitioned by(dt string)
stored as parquet
location '/warehouse/gmall/dws/dws_uv_detail_daycount';
- 数据加载
insert overwrite table dws_uv_detail_daycount partition(dt='2020-03-10')
select
mid_id,
concat_ws('|', collect_set(user_id)) user_id,
concat_ws('|', collect_set(version_code)) version_code,
concat_ws('|', collect_set(version_name)) version_name,
concat_ws('|', collect_set(lang))lang,
concat_ws('|', collect_set(source)) source,
concat_ws('|', collect_set(os)) os,
concat_ws('|', collect_set(area)) area,
concat_ws('|', collect_set(model)) model,
concat_ws('|', collect_set(brand)) brand,
concat_ws('|', collect_set(sdk_version)) sdk_version,
concat_ws('|', collect_set(gmail)) gmail,
concat_ws('|', collect_set(height_width)) height_width,
concat_ws('|', collect_set(app_time)) app_time,
concat_ws('|', collect_set(network)) network,
concat_ws('|', collect_set(lng)) lng,
concat_ws('|', collect_set(lat)) lat,
count(*) login_count
from dwd_start_log
where dt='2020-03-10'
group by mid_id;
3. DWS层(业务)
DWS层的宽表字段,是站在不同维度的视角去看事实表。重点关注业务事实表的度量值。也就是说DWS的表里面主要是维度+各种事实度量值字段组成。 比如用户维度+订单个数(订单事实表)+订单金额(订单事实表)+支付次数(支付事实表)+支付总金额(支付事实表)+加购次数(加购事实表)+加购金额(加购事实表)
3.1 每日会员行为
- 建表语句
drop table if exists dws_user_action_daycount;
create external table dws_user_action_daycount
(
user_id string comment '用户 id',
login_count bigint comment '登录次数',
cart_count bigint comment '加入购物车次数',
cart_amount double comment '加入购物车金额',
order_count bigint comment '下单次数',
order_amount decimal(16,2) comment '下单金额',
payment_count bigint comment '支付次数',
payment_amount decimal(16,2) comment '支付金额'
) COMMENT '每日用户行为'
PARTITIONED BY (`dt` string)
stored as parquet
location '/warehouse/gmall/dws/dws_user_action_daycount/'
tblproperties ("parquet.compression"="lzo");
- 数据装载,为了避免过多的join导致逻辑不太好查看,使用with语法提前准备数据
with
tmp_login as --当日登录统计,统计每个会员当日登录次数
(
select
user_id,
count(*) login_count --登录次数
from dwd_start_log
where dt='2020-03-10'
and user_id is not null
group by user_id
),
tmp_cart as --当日加入购物车统计,统计每个会员当日加入购物车情况
(
select
user_id,
count(*) cart_count, --加入购物车次数
sum(cart_price*sku_num) cart_amount --加入购物车金额
from dwd_fact_cart_info
where dt='2020-03-10'
and user_id is not null
and date_format(create_time,'yyyy-MM-dd')='2020-03-10'
group by user_id
),
tmp_order as --当日下单统计,统计每个会员当日下单情况
(
select
user_id,
count(*) order_count, --下单次数
sum(final_total_amount) order_amount --下单金额
from dwd_fact_order_info
where dt='2020-03-10'
group by user_id
) ,
tmp_payment as --当日支付统计,统计每个会员当日支付情况
(
select
user_id,
count(*) payment_count, --支付次数
sum(payment_amount) payment_amount --支付金额
from dwd_fact_payment_info
where dt='2020-03-10'
group by user_id
),
tmp_order_detail as --当日订单详情统计,统计每个会员当日下单详细信息
(
select
user_id,
--结构为struct数组,每个数组元素对应该会员当日下单的一个商品,包含sku_id,sku_num(下单个
--数),order_count(下单次数),order_amount(下单金额)
collect_set(named_struct('sku_id',sku_id,'sku_num',sku_num,'order_
count',order_count,'order_amount',order_amount)) order_stats
from
(
select
user_id,
sku_id,
sum(sku_num) sku_num,
count(*) order_count,
cast(sum(total_amount) as decimal(20,2)) order_amount
from dwd_fact_order_detail
where dt='2020-03-10'
group by user_id,sku_id
)tmp
group by user_id
)
insert overwrite table dws_user_action_daycount partition(dt='2020-03-10')
select
coalesce(tmp_login.user_id,tmp_cart.user_id,tmp_order.user_id,tmp_payment.
user_id,tmp_order_detail.user_id),
login_count,
nvl(cart_count,0),
nvl(cart_amount,0),
nvl(order_count,0),
nvl(order_amount,0),
nvl(payment_count,0),
nvl(payment_amount,0),
order_stats
from tmp_login
full outer join tmp_cart on tmp_login.user_id=tmp_cart.user_id
full outer join tmp_order on tmp_login.user_id=tmp_order.user_id
full outer join tmp_payment on tmp_login.user_id=tmp_payment.user_id
full outer join tmp_order_detail on tmp_login.user_id=tmp_order_detail.user_id
3.2 每日商品行为
- 建表语句
drop table if exists dws_sku_action_daycount;
create external table dws_sku_action_daycount
(
sku_id string comment 'sku_id',
order_count bigint comment '被下单次数',
order_num bigint comment '被下单件数',
order_amount decimal(16,2) comment '被下单金额',
payment_count bigint comment '被支付次数',
payment_num bigint comment '被支付件数',
payment_amount decimal(16,2) comment '被支付金额',
refund_count bigint comment '被退款次数',
refund_num bigint comment '被退款件数',
refund_amount decimal(16,2) comment '被退款金额',
cart_count bigint comment '被加入购物车次数',
cart_num bigint comment '被加入购物车件数',
favor_count bigint comment '被收藏次数',
appraise_good_count bigint comment '好评数',
appraise_mid_count bigint comment '中评数',
appraise_bad_count bigint comment '差评数',
appraise_default_count bigint comment '默认评价数'
) COMMENT '每日商品行为表'
PARTITIONED BY (`dt` string)
stored as parquet
location '/warehouse/gmall/dws/dws_sku_action_daycount/';
- 数据加载
with
tmp_order as --下单情况统计,统计每款商品(SKU)当日被下单的情况
(
select
sku_id,
count(*) order_count, --被下单次数
sum(sku_num) order_num, --被下单个数
sum(total_amount) order_amount --被下单金额
from dwd_fact_order_detail
where dt='2020-03-10'
group by sku_id
),
tmp_payment as --支付统计,统计每款商品(SKU)当日被支付的情况
(
select
sku_id,
count(*) payment_count, --被支付次数
sum(sku_num) payment_num, --被支付个数
sum(total_amount) payment_amount --被支付金额
from dwd_fact_order_detail
where dt='2020-03-10'
and order_id in
(
select
id
from dwd_fact_order_info
where (dt='2020-03-10'
or dt=date_add('2020-03-10',-1))
and date_format(payment_time,'yyyy-MM-dd')='2020-03-10'
)
group by sku_id
),
tmp_refund as --退款统计
(
select
sku_id,
count(*) refund_count, --被退款次数
sum(refund_num) refund_num, --被退款件数
sum(refund_amount) refund_amount --被退款金额
from dwd_fact_order_refund_info
where dt='2020-03-10'
group by sku_id
),
tmp_cart as --加入购物车统计
(
select
sku_id,
count(*) cart_count, --被加入购物车次数
sum(sku_num) cart_num --被加入购物车个数
from dwd_fact_cart_info
where dt='2020-03-10'
and date_format(create_time,'yyyy-MM-dd')='2020-03-10'
group by sku_id
),
tmp_favor as --收藏统计
(
select
sku_id,
count(*) favor_count --被收藏次数
from dwd_fact_favor_info
where dt='2020-03-10'
and date_format(create_time,'yyyy-MM-dd')='2020-03-10'
group by sku_id
),
tmp_appraise as
(
select
sku_id,
sum(if(appraise='1201',1,0)) appraise_good_count,
sum(if(appraise='1202',1,0)) appraise_mid_count,
sum(if(appraise='1203',1,0)) appraise_bad_count,
sum(if(appraise='1204',1,0)) appraise_default_count
from dwd_fact_comment_info
where dt='2020-03-10'
group by sku_id
)
insert overwrite table dws_sku_action_daycount partition(dt='2020-03-10')
select
sku_id,
sum(order_count),
sum(order_num),
sum(order_amount),
sum(payment_count),
sum(payment_num),
sum(payment_amount),
sum(refund_count),
sum(refund_num),
sum(refund_amount),
sum(cart_count),
sum(cart_num),
sum(favor_count),
sum(appraise_good_count),
sum(appraise_mid_count),
sum(appraise_bad_count),
sum(appraise_default_count)
from
(
select
sku_id,
order_count,
order_num,
order_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_count,
0 refund_num,
0 refund_amount,
0 cart_count,
0 cart_num,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_order
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_amount,
payment_count,
payment_num,
payment_amount,
0 refund_count,
0 refund_num,
0 refund_amount,
0 cart_count,
0 cart_num,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_payment
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
refund_count,
refund_num,
refund_amount,
0 cart_count,
0 cart_num,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_refund
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_count,
0 refund_num,
0 refund_amount,
cart_count,
cart_num,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_cart
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_count,
0 refund_num,
0 refund_amount,
0 cart_count,
0 cart_num,
favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_favor
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_count,
0 refund_num,
0 refund_amount,
0 cart_count,
0 cart_num,
0 favor_count,
appraise_good_count,
appraise_mid_count,
appraise_bad_count,
appraise_default_count
from tmp_appraise
)tmp
group by sku_id;
3.3 每日优惠券统计
- 建表语句
drop table if exists dws_coupon_use_daycount;
create external table dws_coupon_use_daycount
(
`coupon_id` string COMMENT '优惠券id',
`coupon_name` string COMMENT '优惠券名称',
`coupon_type` string COMMENT '优惠券类型 1 现金券 2 折扣券 3 满减券 4 满件打折券',
`condition_amount` string COMMENT '满额数',
`condition_num` string COMMENT '满件数',
`activity_id` string COMMENT '活动编号',
`benefit_amount` string COMMENT '满减金额',
`benefit_discount` string COMMENT '折扣',
`create_time` string COMMENT '创建时间',
`range_type` string COMMENT '范围类型 1商品 2品类 3品牌',
`spu_id` string COMMENT '商品id',
`tm_id` string COMMENT '品牌id',
`category3_id` string COMMENT '品类id',
`limit_num` string COMMENT '最多领用次数',
`get_count` bigint COMMENT '领用次数',
`using_count` bigint COMMENT '使用(下单)次数',
`used_count` bigint COMMENT '使用(支付)次数'
) COMMENT '每日优惠券统计表'
PARTITIONED BY (`dt` string)
stored as parquet
location '/warehouse/gmall/dws/dws_coupon_use_daycount/';
- 数据装载
insert overwrite table dws_coupon_use_daycount partition(dt='2020-03-10')
select
cu.coupon_id,
ci.coupon_name,
ci.coupon_type,
ci.condition_amount,
ci.condition_num,
ci.activity_id,
ci.benefit_amount,
ci.benefit_discount,
ci.create_time,
ci.range_type,
ci.spu_id,
ci.tm_id,
ci.category3_id,
ci.limit_num,
cu.get_count,
cu.using_count,
cu.used_count
from
(
select
coupon_id,
sum(if(date_format(get_time,'yyyy-MM-dd')='2020-03-10',1,0)) get_count,
sum(if(date_format(using_time,'yyyy-MM-dd')='2020-03-10',1,0)) using_
count,
sum(if(date_format(used_time,'yyyy-MM-dd')='2020-03-10',1,0)) used_
count
from dwd_fact_coupon_use
where dt='2020-03-10'
group by coupon_id
)cu
left join
(
select
*
from dwd_dim_coupon_info
where dt='2020-03-10'
)ci on cu.coupon_id=ci.id;
3.4 每日活动统计
- 建表语句
drop table if exists dws_activity_info_daycount;
create external table dws_activity_info_daycount(
`id` string COMMENT '编号',
`activity_name` string COMMENT '活动名称',
`activity_type` string COMMENT '活动类型',
`start_time` string COMMENT '开始时间',
`end_time` string COMMENT '结束时间',
`create_time` string COMMENT '创建时间',
`order_count` bigint COMMENT '下单次数',
`payment_count` bigint COMMENT '支付次数'
) COMMENT '每日活动统计表'
PARTITIONED BY (`dt` string)
row format delimited fields terminated by '\t'
location '/warehouse/gmall/dws/dws_activity_info_daycount/';
- 数据装载
insert overwrite table dws_activity_info_daycount partition(dt='2020-03-10')
select
oi.activity_id,
ai.activity_name,
ai.activity_type,
ai.start_time,
ai.end_time,
ai.create_time,
oi.order_count,
oi.payment_count
from
(
-- dwd_fact_order_info使用create_time作为分区,可能会出现23:59分创建的订单,01:00进行支付
-- 这笔支付数算昨天的话,要查询dt是昨天和今天
select
activity_id,
sum(if(date_format(create_time,'yyyy-MM-dd')='2020-03-10',1,0)) order_count,
sum(if(date_format(payment_time,'yyyy-MM-dd')='2020-03-10',1,0)) payment_count
from dwd_fact_order_info
where (dt='2020-03-10' or dt=date_add('2020-03-10',-1))
and activity_id is not null
group by activity_id
)oi
join
(
select
*
from dwd_dim_activity_info
where dt='2020-03-10'
)ai
on oi.activity_id=ai.id;
3.5 每日购买行为
- 建表脚本
drop table if exists dws_sale_detail_daycount;
create external table dws_sale_detail_daycount
(
user_id string comment '用户 id',
sku_id string comment '商品 id',
user_gender string comment '用户性别',
user_age string comment '用户年龄',
user_level string comment '用户等级',
order_price decimal(10,2) comment '商品价格',
sku_name string comment '商品名称',
sku_tm_id string comment '品牌 id',
sku_category3_id string comment '商品三级品类 id',
sku_category2_id string comment '商品二级品类 id',
sku_category1_id string comment '商品一级品类 id',
sku_category3_name string comment '商品三级品类名称',
sku_category2_name string comment '商品二级品类名称',
sku_category1_name string comment '商品一级品类名称',
spu_id string comment '商品 spu',
sku_num int comment '购买个数',
order_count bigint comment '当日下单单数',
order_amount decimal(16,2) comment '当日下单金额'
) COMMENT '每日购买行为'
PARTITIONED BY (`dt` string)
stored as parquet
location '/warehouse/gmall/dws/dws_sale_detail_daycount/'
tblproperties ("parquet.compression"="lzo");
- 数据装载
insert overwrite table dws_sale_detail_daycount partition(dt='2020-03-10')
select
op.user_id,
op.sku_id,
ui.gender,
months_between('2020-03-10', ui.birthday)/12 age,
ui.user_level,
si.price,
si.sku_name,
si.tm_id,
si.category3_id,
si.category2_id,
si.category1_id,
si.category3_name,
si.category2_name,
si.category1_name,
si.spu_id,
op.sku_num,
op.order_count,
op.order_amount
from
(
select
user_id,
sku_id,
sum(sku_num) sku_num,
count(*) order_count,
sum(total_amount) order_amount
from dwd_fact_order_detail
where dt='2020-03-10'
group by user_id, sku_id
)op
join
(
select
*
from dwd_dim_user_info_his
where end_date='2099-12-31'
)ui on op.user_id = ui.id
join
(
select
*
from dwd_dim_sku_info
where dt='2020-03-10'
)si on op.sku_id = si.id;
4. DWS层数据导入脚本
#!/bin/bash
APP=gmall
hive=/opt/module/hive/bin/hive
# 如果输入了日期参数,则取输入参数作为日期值;
# 如果没有输入日期参数,则取当前时间的前一天作为日期值
if [ -n "$1" ] ;then
do_date=$1
else
do_date=`date -d "-1 day" +%F`
fi
sql="
insert overwrite table ${APP}.dws_uv_detail_daycount partition(dt='$do_date')
select
mid_id,
concat_ws('|', collect_set(user_id)) user_id,
concat_ws('|', collect_set(version_code)) version_code,
concat_ws('|', collect_set(version_name)) version_name,
concat_ws('|', collect_set(lang))lang,
concat_ws('|', collect_set(source)) source,
concat_ws('|', collect_set(os)) os,
concat_ws('|', collect_set(area)) area,
concat_ws('|', collect_set(model)) model,
concat_ws('|', collect_set(brand)) brand,
concat_ws('|', collect_set(sdk_version)) sdk_version,
concat_ws('|', collect_set(gmail)) gmail,
concat_ws('|', collect_set(height_width)) height_width,
concat_ws('|', collect_set(app_time)) app_time,
concat_ws('|', collect_set(network)) network,
concat_ws('|', collect_set(lng)) lng,
concat_ws('|', collect_set(lat)) lat,
count(*) login_count
from ${APP}.dwd_start_log
where dt='$do_date'
group by mid_id;
with
tmp_login as
(
select
user_id,
count(*) login_count
from ${APP}.dwd_start_log
where dt='$do_date'
and user_id is not null
group by user_id
),
tmp_cart as
(
select
user_id,
count(*) cart_count,
sum(cart_price*sku_num) cart_amount
from ${APP}.dwd_fact_cart_info
where dt='$do_date'
and user_id is not null
and date_format(create_time,'yyyy-MM-dd')='$do_date'
group by user_id
),
tmp_order as
(
select
user_id,
count(*) order_count,
sum(final_total_amount) order_amount
from ${APP}.dwd_fact_order_info
where dt='$do_date'
group by user_id
) ,
tmp_payment as
(
select
user_id,
count(*) payment_count,
sum(payment_amount) payment_amount
from ${APP}.dwd_fact_payment_info
where dt='$do_date'
group by user_id
),
tmp_order_detail as
(
select
user_id,
collect_set(named_struct('sku_id',sku_id,'sku_num',sku_num,'order_count',
order_count,'order_amount',order_amount)) order_stats
from
(
select
user_id,
sku_id,
sum(sku_num) sku_num,
count(*) order_count,
cast(sum(total_amount) as decimal(20,2)) order_amount
from ${APP}.dwd_fact_order_detail
where dt='$do_date'
group by user_id,sku_id
)tmp
group by user_id
)
insert overwrite table ${APP}.dws_user_action_daycount partition(dt='$do_date')
select
coalesce(tmp_login.user_id,tmp_cart.user_id,tmp_order.user_id,tmp_payment.
user_id,tmp_order_detail.user_id),
login_count,
nvl(cart_count,0),
nvl(cart_amount,0),
nvl(order_count,0),
nvl(order_amount,0),
nvl(payment_count,0),
nvl(payment_amount,0),
order_stats
from tmp_login
full outer join tmp_cart on tmp_login.user_id=tmp_cart.user_id
full outer join tmp_order on tmp_login.user_id=tmp_order.user_id
full outer join tmp_payment on tmp_login.user_id=tmp_payment.user_id
full outer join tmp_order_detail on tmp_login.user_id=tmp_order_detail.user_id;
with
tmp_order as
(
select
sku_id,
count(*) order_count,
sum(sku_num) order_num,
sum(total_amount) order_amount
from ${APP}.dwd_fact_order_detail
where dt='$do_date'
group by sku_id
),
tmp_payment as
(
select
sku_id,
count(*) payment_count,
sum(sku_num) payment_num,
sum(total_amount) payment_amount
from ${APP}.dwd_fact_order_detail
where dt='$do_date'
and order_id in
(
select
id
from ${APP}.dwd_fact_order_info
where (dt='$do_date' or dt=date_add('$do_date',-1))
and date_format(payment_time,'yyyy-MM-dd')='$do_date'
)
group by sku_id
),
tmp_refund as
(
select
sku_id,
count(*) refund_count,
sum(refund_num) refund_num,
sum(refund_amount) refund_amount
from ${APP}.dwd_fact_order_refund_info
where dt='$do_date'
group by sku_id
),
tmp_cart as
(
select
sku_id,
count(*) cart_count,
sum(sku_num) cart_num
from ${APP}.dwd_fact_cart_info
where dt='$do_date'
and date_format(create_time,'yyyy-MM-dd')='$do_date'
group by sku_id
),
tmp_favor as
(
select
sku_id,
count(*) favor_count
from ${APP}.dwd_fact_favor_info
where dt='$do_date'
and date_format(create_time,'yyyy-MM-dd')='$do_date'
group by sku_id
),
tmp_appraise as
(
select
sku_id,
sum(if(appraise='1201',1,0)) appraise_good_count,
sum(if(appraise='1202',1,0)) appraise_mid_count,
sum(if(appraise='1203',1,0)) appraise_bad_count,
sum(if(appraise='1204',1,0)) appraise_default_count
from ${APP}.dwd_fact_comment_info
where dt='$do_date'
group by sku_id
)
insert overwrite table ${APP}.dws_sku_action_daycount partition(dt='$do_date')
select
sku_id,
sum(order_count),
sum(order_num),
sum(order_amount),
sum(payment_count),
sum(payment_num),
sum(payment_amount),
sum(refund_count),
sum(refund_num),
sum(refund_amount),
sum(cart_count),
sum(cart_num),
sum(favor_count),
sum(appraise_good_count),
sum(appraise_mid_count),
sum(appraise_bad_count),
sum(appraise_default_count)
from
(
select
sku_id,
order_count,
order_num,
order_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_count,
0 refund_num,
0 refund_amount,
0 cart_count,
0 cart_num,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_order
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_amount,
payment_count,
payment_num,
payment_amount,
0 refund_count,
0 refund_num,
0 refund_amount,
0 cart_count,
0 cart_num,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_payment
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
refund_count,
refund_num,
refund_amount,
0 cart_count,
0 cart_num,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_refund
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_count,
0 refund_num,
0 refund_amount,
cart_count,
cart_num,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_cart
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_count,
0 refund_num,
0 refund_amount,
0 cart_count,
0 cart_num,
favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_favor
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_count,
0 refund_num,
0 refund_amount,
0 cart_count,
0 cart_num,
0 favor_count,
appraise_good_count,
appraise_mid_count,
appraise_bad_count,
appraise_default_count
from tmp_appraise
)tmp
group by sku_id;
insert overwrite table ${APP}.dws_coupon_use_daycount partition(dt='$do_date')
select
cu.coupon_id,
ci.coupon_name,
ci.coupon_type,
ci.condition_amount,
ci.condition_num,
ci.activity_id,
ci.benefit_amount,
ci.benefit_discount,
ci.create_time,
ci.range_type,
ci.spu_id,
ci.tm_id,
ci.category3_id,
ci.limit_num,
cu.get_count,
cu.using_count,
cu.used_count
from
(
select
coupon_id,
sum(if(date_format(get_time,'yyyy-MM-dd')='$do_date',1,0)) get_count,
sum(if(date_format(using_time,'yyyy-MM-dd')='$do_date',1,0)) using_count,
sum(if(date_format(used_time,'yyyy-MM-dd')='$do_date',1,0)) used_count
from ${APP}.dwd_fact_coupon_use
where dt='$do_date'
group by coupon_id
)cu
left join
(
select
*
from ${APP}.dwd_dim_coupon_info
where dt='$do_date'
)ci on cu.coupon_id=ci.id;
insert overwrite table ${APP}.dws_activity_info_daycount partition(dt='$do_date')
select
oi.activity_id,
ai.activity_name,
ai.activity_type,
ai.start_time,
ai.end_time,
ai.create_time,
oi.order_count,
oi.payment_count
from
(
select
activity_id,
sum(if(date_format(create_time,'yyyy-MM-dd')='$do_date',1,0)) order_count,
sum(if(date_format(payment_time,'yyyy-MM-dd')='$do_date',1,0)) payment_count
from ${APP}.dwd_fact_order_info
where (dt='$do_date' or dt=date_add('$do_date',-1))
and activity_id is not null
group by activity_id
)oi
join
(
select
*
from ${APP}.dwd_dim_activity_info
where dt='$do_date'
)ai
on oi.activity_id=ai.id;
"
$hive -e "$sql"
5. DWT层
5.1 设备主题宽表
涉及累计型宽表需要整理出old、new,用full outer join。涉及首次XXX取old中的,涉及末次XXX取new中的,当日取new的,累计XXX取old+new。
- 建表语句
drop table if exists dwt_uv_topic;
create external table dwt_uv_topic
(
`mid_id` string COMMENT '设备唯一标识',
`user_id` string COMMENT '用户标识',
`version_code` string COMMENT '程序版本号',
`version_name` string COMMENT '程序版本名',
`lang` string COMMENT '系统语言',
`source` string COMMENT '渠道号',
`os` string COMMENT 'Android版本',
`area` string COMMENT '区域',
`model` string COMMENT '手机型号',
`brand` string COMMENT '手机品牌',
`sdk_version` string COMMENT 'sdkVersion',
`gmail` string COMMENT 'gmail',
`height_width` string COMMENT '屏幕宽高',
`app_time` string COMMENT '客户端日志产生时的时间',
`network` string COMMENT '网络模式',
`lng` string COMMENT '经度',
`lat` string COMMENT '纬度',
`login_date_first` string comment '首次活跃时间',
`login_date_last` string comment '末次活跃时间',
`login_day_count` bigint comment '当日活跃次数',
`login_count` bigint comment '累计活跃天数'
) COMMENT'设备主题宽表'
stored as parquet
location '/warehouse/gmall/dwt/dwt_uv_topic';
- 数据装载
insert overwrite table dwt_uv_topic
select
nvl(new.mid_id,old.mid_id),
nvl(new.user_id,old.user_id),
nvl(new.version_code,old.version_code),
nvl(new.version_name,old.version_name),
nvl(new.lang,old.lang),
nvl(new.source,old.source),
nvl(new.os,old.os),
nvl(new.area,old.area),
nvl(new.model,old.model),
nvl(new.brand,old.brand),
nvl(new.sdk_version,old.sdk_version),
nvl(new.gmail,old.gmail),
nvl(new.height_width,old.height_width),
nvl(new.app_time,old.app_time),
nvl(new.network,old.network),
nvl(new.lng,old.lng),
nvl(new.lat,old.lat),
if(old.mid_id is null,'2020-03-10',old.login_date_first),
if(new.mid_id is not null,'2020-03-10',old.login_date_last),
if(new.mid_id is not null, new.login_count,0),
nvl(old.login_count,0)+if(new.login_count>0,1,0)
from
(
select
*
from dwt_uv_topic
)old
full outer join
(
select
*
from dws_uv_detail_daycount
where dt='2020-03-10'
)new
on old.mid_id=new.mid_id;
5.2 会员主题宽表
宽表字段怎么来?维度关联的事实表度量值+开头、结尾+累积+累积一个时间段。
- 建表脚本
drop table if exists dwt_user_topic;
create external table dwt_user_topic
(
user_id string comment '用户id',
login_date_first string comment '首次登录时间',
login_date_last string comment '末次登录时间',
login_count bigint comment '累计登录天数',
login_last_30d_count bigint comment '最近30日登录天数',
order_date_first string comment '首次下单时间',
order_date_last string comment '末次下单时间',
order_count bigint comment '累计下单次数',
order_amount decimal(16,2) comment '累计下单金额',
order_last_30d_count bigint comment '最近30日下单次数',
order_last_30d_amount bigint comment '最近30日下单金额',
payment_date_first string comment '首次支付时间',
payment_date_last string comment '末次支付时间',
payment_count decimal(16,2) comment '累计支付次数',
payment_amount decimal(16,2) comment '累计支付金额',
payment_last_30d_count decimal(16,2) comment '最近30日支付次数',
payment_last_30d_amount decimal(16,2) comment '最近30日支付金额'
)COMMENT '会员主题宽表'
stored as parquet
location '/warehouse/gmall/dwt/dwt_user_topic/';
- 数据加载
insert overwrite table dwt_user_topic
select
nvl(new.user_id,old.user_id),
if(old.login_date_first is null and new.login_count>0,'2020-03-10',old.
login_date_first),
if(new.login_count>0,'2020-03-10',old.login_date_last),
nvl(old.login_count,0)+if(new.login_count>0,1,0),
nvl(new.login_last_30d_count,0),
if(old.order_date_first is null and new.order_count>0,'2020-03-10',old.
order_date_first),
if(new.order_count>0,'2020-03-10',old.order_date_last),
nvl(old.order_count,0)+nvl(new.order_count,0),
nvl(old.order_amount,0)+nvl(new.order_amount,0),
nvl(new.order_last_30d_count,0),
nvl(new.order_last_30d_amount,0),
if(old.payment_date_first is null and new.payment_count>0,'2020-03-10',old.
payment_date_first),
if(new.payment_count>0,'2020-03-10',old.payment_date_last),
nvl(old.payment_count,0)+nvl(new.payment_count,0),
nvl(old.payment_amount,0)+nvl(new.payment_amount,0),
nvl(new.payment_last_30d_count,0),
nvl(new.payment_last_30d_amount,0)
from
dwt_user_topic old
full outer join
(
select
user_id,
sum(if(dt='2020-03-10',login_count,0)) login_count,
sum(if(dt='2020-03-10',order_count,0)) order_count,
sum(if(dt='2020-03-10',order_amount,0)) order_amount,
sum(if(dt='2020-03-10',payment_count,0)) payment_count,
sum(if(dt='2020-03-10',payment_amount,0)) payment_amount,
sum(if(login_count>0,1,0)) login_last_30d_count,
sum(order_count) order_last_30d_count,
sum(order_amount) order_last_30d_amount,
sum(payment_count) payment_last_30d_count,
sum(payment_amount) payment_last_30d_amount
from dws_user_action_daycount
where dt>=date_add( '2020-03-10',-30)
group by user_id
)new
on old.user_id=new.user_id;
5.3 商品主题宽表
- 建表语句
drop table if exists dwt_sku_topic;
create external table dwt_sku_topic
(
sku_id string comment 'sku_id',
spu_id string comment 'spu_id',
order_last_30d_count bigint comment '最近30日被下单次数',
order_last_30d_num bigint comment '最近30日被下单件数',
order_last_30d_amount decimal(16,2) comment '最近30日被下单金额',
order_count bigint comment '累计被下单次数',
order_num bigint comment '累计被下单件数',
order_amount decimal(16,2) comment '累计被下单金额',
payment_last_30d_count bigint comment '最近30日被支付次数',
payment_last_30d_num bigint comment '最近30日被支付件数',
payment_last_30d_amount decimal(16,2) comment '最近30日被支付金额',
payment_count bigint comment '累计被支付次数',
payment_num bigint comment '累计被支付件数',
payment_amount decimal(16,2) comment '累计被支付金额',
refund_last_30d_count bigint comment '最近30日退款次数',
refund_last_30d_num bigint comment '最近30日退款件数',
refund_last_30d_amount decimal(10,2) comment '最近30日退款金额',
refund_count bigint comment '累计退款次数',
refund_num bigint comment '累计退款件数',
refund_amount decimal(10,2) comment '累计退款金额',
cart_last_30d_count bigint comment '最近30日被加入购物车次数',
cart_last_30d_num bigint comment '最近30日被加入购物车件数',
cart_count bigint comment '累计被加入购物车次数',
cart_num bigint comment '累计被加入购物车件数',
favor_last_30d_count bigint comment '最近30日被收藏次数',
favor_count bigint comment '累计被收藏次数',
appraise_last_30d_good_count bigint comment '最近30日好评数',
appraise_last_30d_mid_count bigint comment '最近30日中评数',
appraise_last_30d_bad_count bigint comment '最近30日差评数',
appraise_last_30d_default_count bigint comment '最近30日默认评价数',
appraise_good_count bigint comment '累计好评数',
appraise_mid_count bigint comment '累计中评数',
appraise_bad_count bigint comment '累计差评数',
appraise_default_count bigint comment '累计默认评价数'
)COMMENT '商品主题宽表'
stored as parquet
location '/warehouse/gmall/dwt/dwt_sku_topic/';
- 数据装载
insert overwrite table dwt_sku_topic
select
nvl(new.sku_id,old.sku_id),
sku_info.spu_id,
nvl(new.order_count30,0),
nvl(new.order_num30,0),
nvl(new.order_amount30,0),
nvl(old.order_count,0) + nvl(new.order_count,0),
nvl(old.order_num,0) + nvl(new.order_num,0),
nvl(old.order_amount,0) + nvl(new.order_amount,0),
nvl(new.payment_count30,0),
nvl(new.payment_num30,0),
nvl(new.payment_amount30,0),
nvl(old.payment_count,0) + nvl(new.payment_count,0),
nvl(old.payment_num,0) + nvl(new.payment_count,0),
nvl(old.payment_amount,0) + nvl(new.payment_count,0),
nvl(new.refund_count30,0),
nvl(new.refund_num30,0),
nvl(new.refund_amount30,0),
nvl(old.refund_count,0) + nvl(new.refund_count,0),
nvl(old.refund_num,0) + nvl(new.refund_num,0),
nvl(old.refund_amount,0) + nvl(new.refund_amount,0),
nvl(new.cart_count30,0),
nvl(new.cart_num30,0),
nvl(old.cart_count,0) + nvl(new.cart_count,0),
nvl(old.cart_num,0) + nvl(new.cart_num,0),
nvl(new.favor_count30,0),
nvl(old.favor_count,0) + nvl(new.favor_count,0),
nvl(new.appraise_good_count30,0),
nvl(new.appraise_mid_count30,0),
nvl(new.appraise_bad_count30,0),
nvl(new.appraise_default_count30,0) ,
nvl(old.appraise_good_count,0) + nvl(new.appraise_good_count,0),
nvl(old.appraise_mid_count,0) + nvl(new.appraise_mid_count,0),
nvl(old.appraise_bad_count,0) + nvl(new.appraise_bad_count,0),
nvl(old.appraise_default_count,0) + nvl(new.appraise_default_count,0)
from
(
select
sku_id,
spu_id,
order_last_30d_count,
order_last_30d_num,
order_last_30d_amount,
order_count,
order_num,
order_amount ,
payment_last_30d_count,
payment_last_30d_num,
payment_last_30d_amount,
payment_count,
payment_num,
payment_amount,
refund_last_30d_count,
refund_last_30d_num,
refund_last_30d_amount,
refund_count,
refund_num,
refund_amount,
cart_last_30d_count,
cart_last_30d_num,
cart_count,
cart_num,
favor_last_30d_count,
favor_count,
appraise_last_30d_good_count,
appraise_last_30d_mid_count,
appraise_last_30d_bad_count,
appraise_last_30d_default_count,
appraise_good_count,
appraise_mid_count,
appraise_bad_count,
appraise_default_count
from dwt_sku_topic
)old
full outer join
(
select
sku_id,
sum(if(dt='2020-03-10', order_count,0 )) order_count,
sum(if(dt='2020-03-10',order_num ,0 )) order_num,
sum(if(dt='2020-03-10',order_amount,0 )) order_amount ,
sum(if(dt='2020-03-10',payment_count,0 )) payment_count,
sum(if(dt='2020-03-10',payment_num,0 )) payment_num,
sum(if(dt='2020-03-10',payment_amount,0 )) payment_amount,
sum(if(dt='2020-03-10',refund_count,0 )) refund_count,
sum(if(dt='2020-03-10',refund_num,0 )) refund_num,
sum(if(dt='2020-03-10',refund_amount,0 )) refund_amount,
sum(if(dt='2020-03-10',cart_count,0 )) cart_count,
sum(if(dt='2020-03-10',cart_num,0 )) cart_num,
sum(if(dt='2020-03-10',favor_count,0 )) favor_count,
sum(if(dt='2020-03-10',appraise_good_count,0 )) appraise_good_count,
sum(if(dt='2020-03-10',appraise_mid_count,0 ) ) appraise_mid_count ,
sum(if(dt='2020-03-10',appraise_bad_count,0 )) appraise_bad_count,
sum(if(dt='2020-03-10',appraise_default_count,0 )) appraise_default_
count,
sum(order_count) order_count30 ,
sum(order_num) order_num30,
sum(order_amount) order_amount30,
sum(payment_count) payment_count30,
sum(payment_num) payment_num30,
sum(payment_amount) payment_amount30,
sum(refund_count) refund_count30,
sum(refund_num) refund_num30,
sum(refund_amount) refund_amount30,
sum(cart_count) cart_count30,
sum(cart_num) cart_num30,
sum(favor_count) favor_count30,
sum(appraise_good_count) appraise_good_count30,
sum(appraise_mid_count) appraise_mid_count30,
sum(appraise_bad_count) appraise_bad_count30,
sum(appraise_default_count) appraise_default_count30
from dws_sku_action_daycount
where dt >= date_add ('2020-03-10', -30)
group by sku_id
)new
on new.sku_id = old.sku_id
left join
(select * from dwd_dim_sku_info where dt='2020-03-10') sku_info
on nvl(new.sku_id,old.sku_id)= sku_info.id;
5.4 优惠券主题宽表
- 建表语句
drop table if exists dwt_coupon_topic;
create external table dwt_coupon_topic
(
`coupon_id` string COMMENT '优惠券id',
`get_day_count` bigint COMMENT '当日领用次数',
`using_day_count` bigint COMMENT '当日使用(下单)次数',
`used_day_count` bigint COMMENT '当日使用(支付)次数',
`get_count` bigint COMMENT '累积计用次数',
`using_count` bigint COMMENT '累计使用(下单)次数',
`used_count` bigint COMMENT '累计使用(支付)次数'
)COMMENT '优惠券主题宽表'
stored as parquet
location '/warehouse/gmall/dwt/dwt_coupon_topic/';
- 数据装载
insert overwrite table dwt_coupon_topic
select
nvl(new.coupon_id,old.coupon_id),
nvl(new.get_count,0),
nvl(new.using_count,0),
nvl(new.used_count,0),
nvl(old.get_count,0)+nvl(new.get_count,0),
nvl(old.using_count,0)+nvl(new.using_count,0),
nvl(old.used_count,0)+nvl(new.used_count,0)
from
(
select
*
from dwt_coupon_topic
)old
full outer join
(
select
coupon_id,
get_count,
using_count,
used_count
from dws_coupon_use_daycount
where dt='2020-03-10'
)new
on old.coupon_id=new.coupon_id;
5.5 活动主题宽表
- 建表语句
drop table if exists dwt_activity_topic;
create external table dwt_activity_topic(
`id` string COMMENT '活动id',
`activity_name` string COMMENT '活动名称',
`order_day_count` bigint COMMENT '当日下单次数',
`payment_day_count` bigint COMMENT '当日支付次数',
`order_count` bigint COMMENT '累计下单次数',
`payment_count` bigint COMMENT '累计支付次数'
) COMMENT '活动主题宽表'
stored as parquet
location '/warehouse/gmall/dwt/dwt_activity_topic/';
- 数据装载
insert overwrite table dwt_activity_topic
select
nvl(new.id,old.id),
nvl(new.activity_name,old.activity_name),
nvl(new.order_count,0),
nvl(new.payment_count,0),
nvl(old.order_count,0)+nvl(new.order_count,0),
nvl(old.payment_count,0)+nvl(new.payment_count,0)
from
(
select
*
from dwt_activity_topic
)old
full outer join
(
select
id,
activity_name,
order_count,
payment_count
from dws_activity_info_daycount
where dt='2020-03-10'
)new
on old.id=new.id;
6. DWT层数据导入脚本
#!/bin/bash
APP=gmall
hive=/opt/module/hive/bin/hive
# 如果输入了日期参数,则取输入参数作为日期值;如果没有输入日期参数,则取当前时间的前一天作为日期值
if [ -n "$1" ] ;then
do_date=$1
else
do_date=`date -d "-1 day" +%F`
fi
sql="
insert overwrite table ${APP}.dwt_uv_topic
select
nvl(new.mid_id,old.mid_id),
nvl(new.user_id,old.user_id),
nvl(new.version_code,old.version_code),
nvl(new.version_name,old.version_name),
nvl(new.lang,old.lang),
nvl(new.source,old.source),
nvl(new.os,old.os),
nvl(new.area,old.area),
nvl(new.model,old.model),
nvl(new.brand,old.brand),
nvl(new.sdk_version,old.sdk_version),
nvl(new.gmail,old.gmail),
nvl(new.height_width,old.height_width),
nvl(new.app_time,old.app_time),
nvl(new.network,old.network),
nvl(new.lng,old.lng),
nvl(new.lat,old.lat),
nvl(old.login_date_first,'$do_date'),
if(new.login_count>0,'$do_date',old.login_date_last),
nvl(new.login_count,0),
nvl(new.login_count,0)+nvl(old.login_count,0)
from
(
select
*
from ${APP}.dwt_uv_topic
)old
full outer join
(
select
*
from ${APP}.dws_uv_detail_daycount
where dt='$do_date'
)new
on old.mid_id=new.mid_id;
insert overwrite table ${APP}.dwt_user_topic
select
nvl(new.user_id,old.user_id),
if(old.login_date_first is null and new.login_count>0,'$do_date',old.login_
date_first),
if(new.login_count>0,'$do_date',old.login_date_last),
nvl(old.login_count,0)+if(new.login_count>0,1,0),
nvl(new.login_last_30d_count,0),
if(old.order_date_first is null and new.order_count>0,'$do_date',old.order_
date_first),
if(new.order_count>0,'$do_date',old.order_date_last),
nvl(old.order_count,0)+nvl(new.order_count,0),
nvl(old.order_amount,0)+nvl(new.order_amount,0),
nvl(new.order_last_30d_count,0),
nvl(new.order_last_30d_amount,0),
if(old.payment_date_first is null and new.payment_count>0,'$do_date',old.
payment_date_first),
if(new.payment_count>0,'$do_date',old.payment_date_last),
nvl(old.payment_count,0)+nvl(new.payment_count,0),
nvl(old.payment_amount,0)+nvl(new.payment_amount,0),
nvl(new.payment_last_30d_count,0),
nvl(new.payment_last_30d_amount,0)
from
(
select
*
from ${APP}.dwt_user_topic
)old
full outer join
(
select
user_id,
sum(if(dt='$do_date',login_count,0)) login_count,
sum(if(dt='$do_date',order_count,0)) order_count,
sum(if(dt='$do_date',order_amount,0)) order_amount,
sum(if(dt='$do_date',payment_count,0)) payment_count,
sum(if(dt='$do_date',payment_amount,0)) payment_amount,
sum(if(order_count>0,1,0)) login_last_30d_count,
sum(order_count) order_last_30d_count,
sum(order_amount) order_last_30d_amount,
sum(payment_count) payment_last_30d_count,
sum(payment_amount) payment_last_30d_amount
from ${APP}.dws_user_action_daycount
where dt>=date_add( '$do_date',-30)
group by user_id
)new
on old.user_id=new.user_id;
with
sku_act as
(
select
sku_id,
sum(if(dt='$do_date', order_count,0 )) order_count,
sum(if(dt='$do_date',order_num ,0 )) order_num,
sum(if(dt='$do_date',order_amount,0 )) order_amount ,
sum(if(dt='$do_date',payment_count,0 )) payment_count,
sum(if(dt='$do_date',payment_num,0 )) payment_num,
sum(if(dt='$do_date',payment_amount,0 )) payment_amount,
sum(if(dt='$do_date',refund_count,0 )) refund_count,
sum(if(dt='$do_date',refund_num,0 )) refund_num,
sum(if(dt='$do_date',refund_amount,0 )) refund_amount,
sum(if(dt='$do_date',cart_count,0 )) cart_count,
sum(if(dt='$do_date',cart_num,0 )) cart_num,
sum(if(dt='$do_date',favor_count,0 )) favor_count,
sum(if(dt='$do_date',appraise_good_count,0 )) appraise_good_count,
sum(if(dt='$do_date',appraise_mid_count,0 ) ) appraise_mid_count ,
sum(if(dt='$do_date',appraise_bad_count,0 )) appraise_bad_count,
sum(if(dt='$do_date',appraise_default_count,0 )) appraise_default_count,
sum( order_count ) order_count30 ,
sum( order_num ) order_num30,
sum(order_amount ) order_amount30,
sum(payment_count ) payment_count30,
sum(payment_num ) payment_num30,
sum(payment_amount ) payment_amount30,
sum(refund_count ) refund_count30,
sum(refund_num ) refund_num30,
sum(refund_amount ) refund_amount30,
sum(cart_count ) cart_count30,
sum(cart_num ) cart_num30,
sum(favor_count ) favor_count30,
sum(appraise_good_count ) appraise_good_count30,
sum(appraise_mid_count ) appraise_mid_count30,
sum(appraise_bad_count ) appraise_bad_count30,
sum(appraise_default_count ) appraise_default_count30
from ${APP}.dws_sku_action_daycount
where dt>=date_add ( '$do_date',-30)
group by sku_id
),
sku_topic
as
(
select
sku_id,
spu_id,
order_last_30d_count,
order_last_30d_num,
order_last_30d_amount,
order_count,
order_num,
order_amount ,
payment_last_30d_count,
payment_last_30d_num,
payment_last_30d_amount,
payment_count,
payment_num,
payment_amount,
refund_last_30d_count,
refund_last_30d_num,
refund_last_30d_amount ,
refund_count ,
refund_num ,
refund_amount ,
cart_last_30d_count ,
cart_last_30d_num ,
cart_count ,
cart_num ,
favor_last_30d_count ,
favor_count ,
appraise_last_30d_good_count ,
appraise_last_30d_mid_count ,
appraise_last_30d_bad_count ,
appraise_last_30d_default_count ,
appraise_good_count ,
appraise_mid_count ,
appraise_bad_count ,
appraise_default_count
from ${APP}.dwt_sku_topic
)
insert overwrite table ${APP}.dwt_sku_topic
select
nvl(sku_act.sku_id,sku_topic.sku_id) ,
sku_info.spu_id,
nvl (sku_act.order_count30,0) ,
nvl (sku_act.order_num30,0) ,
nvl (sku_act.order_amount30,0) ,
nvl(sku_topic.order_count,0)+ nvl (sku_act.order_count,0) ,
nvl(sku_topic.order_num,0)+ nvl (sku_act.order_num,0) ,
nvl(sku_topic.order_amount,0)+ nvl (sku_act.order_amount,0),
nvl (sku_act.payment_count30,0),
nvl (sku_act.payment_num30,0),
nvl (sku_act.payment_amount30,0),
nvl(sku_topic.payment_count,0)+ nvl (sku_act.payment_count,0) ,
nvl(sku_topic.payment_num,0)+ nvl (sku_act.payment_count,0) ,
nvl(sku_topic.payment_amount,0)+ nvl (sku_act.payment_count,0) ,
nvl (refund_count30,0),
nvl (sku_act.refund_num30,0),
nvl (sku_act.refund_amount30,0),
nvl(sku_topic.refund_count,0)+ nvl (sku_act.refund_count,0),
nvl(sku_topic.refund_num,0)+ nvl (sku_act.refund_num,0),
nvl(sku_topic.refund_amount,0)+ nvl (sku_act.refund_amount,0),
nvl(sku_act.cart_count30,0) ,
nvl(sku_act.cart_num30,0) ,
nvl(sku_topic.cart_count ,0)+ nvl (sku_act.cart_count,0),
nvl( sku_topic.cart_num ,0)+ nvl (sku_act.cart_num,0),
nvl(sku_act.favor_count30 ,0) ,
nvl (sku_topic.favor_count ,0)+ nvl (sku_act.favor_count,0),
nvl (sku_act.appraise_good_count30 ,0) ,
nvl (sku_act.appraise_mid_count30 ,0) ,
nvl (sku_act.appraise_bad_count30 ,0) ,
nvl (sku_act.appraise_default_count30 ,0) ,
nvl (sku_topic.appraise_good_count ,0)+ nvl (sku_act.appraise_good_count,0) ,
nvl (sku_topic.appraise_mid_count ,0)+ nvl (sku_act.appraise_mid_count,0) ,
nvl (sku_topic.appraise_bad_count ,0)+ nvl (sku_act.appraise_bad_count,0) ,
nvl (sku_topic.appraise_default_count ,0)+ nvl (sku_act.appraise_default_
count,0)
from sku_act
full outer join sku_topic
on sku_act.sku_id =sku_topic.sku_id
left join
(select * from ${APP}.dwd_dim_sku_info where dt='$do_date') sku_info
on nvl(sku_topic.sku_id,sku_act.sku_id)= sku_info.id;
insert overwrite table ${APP}.dwt_coupon_topic
select
nvl(new.coupon_id,old.coupon_id),
nvl(new.get_count,0),
nvl(new.using_count,0),
nvl(new.used_count,0),
nvl(old.get_count,0)+nvl(new.get_count,0),
nvl(old.using_count,0)+nvl(new.using_count,0),
nvl(old.used_count,0)+nvl(new.used_count,0)
from
(
select
*
from ${APP}.dwt_coupon_topic
)old
full outer join
(
select
coupon_id,
get_count,
using_count,
used_count
from ${APP}.dws_coupon_use_daycount
where dt='$do_date'
)new
on old.coupon_id=new.coupon_id;
insert overwrite table ${APP}.dwt_activity_topic
select
nvl(new.id,old.id),
nvl(new.activity_name,old.activity_name),
nvl(new.order_count,0),
nvl(new.payment_count,0),
nvl(old.order_count,0)+nvl(new.order_count,0),
nvl(old.payment_count,0)+nvl(new.payment_count,0)
from
(
select
*
from ${APP}.dwt_activity_topic
)old
full outer join
(
select
id,
activity_name,
order_count,
payment_count
from ${APP}.dws_activity_info_daycount
where dt='$do_date'
)new
on old.id=new.id;
"
$hive -e "$sql"