Skip to content

电商仓库建设之DWD和DMI层

1. 维度建模

DWD层需构建维度模型,经过分析业务、维度、度量关系如下:
Alt text 至此,电商仓库的维度建模已经完毕。

2. DWD层表结构设计

Alt text 数据采用parquet存储方式,是可以支持切片的,不需要再对数据创建索引。

3. 创建启动表

  1. 创建表
sql
drop table if exists dwd_start_log;
CREATE EXTERNAL TABLE dwd_start_log(
`mid_id` string,
`user_id` string,
`version_code` string,
`version_name` string,
`lang` string,
`source` string,
`os` string,
`area` string,
`model` string,
`brand` string,
`sdk_version` string,
`gmail` string,
`height_width` string,
`app_time` string,
`network` string,
`lng` string,
`lat` string,
`entry` string,
`open_ad_type` string,
`action` string,
`loading_time` string,
`detail` string,
`extend1` string
)
PARTITIONED BY (dt string)
stored as parquet
location '/warehouse/gmall/dwd/dwd_start_log/'
TBLPROPERTIES('parquet.compression'='lzo');
  1. 导入数据,其中get_json_object支持解析json字符串
sh
insert overwrite table dwd_start_log
PARTITION (dt='2020-03-10')
select
get_json_object(line,'$.mid') mid_id,
get_json_object(line,'$.uid') user_id,
get_json_object(line,'$.vc') version_code,
get_json_object(line,'$.vn') version_name,
get_json_object(line,'$.l') lang,
get_json_object(line,'$.sr') source,
get_json_object(line,'$.os') os,
get_json_object(line,'$.ar') area,
get_json_object(line,'$.md') model,
get_json_object(line,'$.ba') brand,
get_json_object(line,'$.sv') sdk_version,
get_json_object(line,'$.g') gmail,
get_json_object(line,'$.hw') height_width,
get_json_object(line,'$.t') app_time,
get_json_object(line,'$.nw') network,
get_json_object(line,'$.ln') lng,
get_json_object(line,'$.la') lat,
get_json_object(line,'$.entry') entry,
get_json_object(line,'$.open_ad_type') open_ad_type,
get_json_object(line,'$.action') action,
get_json_object(line,'$.loading_time') loading_time,
get_json_object(line,'$.detail') detail,
get_json_object(line,'$.extend1') extend1
from ods_start_log
where dt='2020-03-10';
  1. 方便维护,可以写成一个脚本ods_to_dwd_log.sh
sh
#!/bin/bash
# 定义变量方便修改
APP=gmall
hive=/opt/module/hive/bin/hive
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$1" ] ;then
do_date=$1
else
do_date=`date -d "-1 day" +%F`
fi
sql="
set hive.exec.dynamic.partition.mode=nonstrict;
insert overwrite table "$APP".dwd_start_log
PARTITION (dt='$do_date')
select
get_json_object(line,'$.mid') mid_id,
get_json_object(line,'$.uid') user_id,
get_json_object(line,'$.vc') version_code,
get_json_object(line,'$.vn') version_name,
get_json_object(line,'$.l') lang,
get_json_object(line,'$.sr') source,
get_json_object(line,'$.os') os,
get_json_object(line,'$.ar') area,
get_json_object(line,'$.md') model,
get_json_object(line,'$.ba') brand,
get_json_object(line,'$.sv') sdk_version,
get_json_object(line,'$.g') gmail,
get_json_object(line,'$.hw') height_width,
get_json_object(line,'$.t') app_time,
get_json_object(line,'$.nw') network,
get_json_object(line,'$.ln') lng,
get_json_object(line,'$.la') lat,
get_json_object(line,'$.entry') entry,
get_json_object(line,'$.open_ad_type') open_ad_type,
get_json_object(line,'$.action') action,
get_json_object(line,'$.loading_time') loading_time,
get_json_object(line,'$.detail') detail,
get_json_object(line,'$.extend1') extend1
from "$APP".ods_start_log
where dt='$do_date';
"
$hive -e "$sql"

4. DWD层(用户行为相关表)

Alt text 从json字段中解析并炸裂成多行的逻辑解析: Alt text

  1. 创建事件日志基础明细表
sql
drop table if exists dwd_base_event_log;
CREATE EXTERNAL TABLE dwd_base_event_log(
`mid_id` string,
`user_id` string,
`version_code` string,
`version_name` string,
`lang` string,
`source` string,
`os` string,
`area` string,
`model` string,
`brand` string,
`sdk_version` string,
`gmail` string,
`height_width` string,
`app_time` string,
`network` string,
`lng` string,
`lat` string,
`event_name` string,
`event_json` string,
`server_time` string)
PARTITIONED BY (`dt` string)
stored as parquet
location '/warehouse/gmall/dwd/dwd_base_event_log/'
TBLPROPERTIES('parquet.compression'='lzo');

说明:其中event_name和event_json用来对应事件名和整个事件。这个地方将原始日志一对多的形式拆分出来了。操作的时候我们需要将原始日志展平,需要用到UDF和UDTF。

4.5 自定义UDF函数(解析公共字段)

UDF函数特点:一行进一行出。简称,一进一出。

  1. 创建hivefunction工程
  2. 自定义UDF函数(解析公共字段)
java
public class BaseFieldUdfFunction extends UDF {

    public String evaluate(String line, String key) {
        String[] log = line.split("\\|");
        if(log.length!=2 || StringUtils.isBlank(log[0])){
            return "";
        }
        JSONObject baseJson = new JSONObject(log[1]);
        if("st".equals(key)){
            return log[0].trim();
        }else if("et".equals(key)){
            if(baseJson.has("et")){
                return baseJson.getString("et");
            }
        }else {
            // 获取 key 对应公共字段的 value
            JSONObject cm = baseJson.getJSONObject("cm");
            if(cm.has(key)){
                return cm.getString(key);
            }
        }
        return "";
    }
}
java
public class EventJsonUDTF extends GenericUDTF {

    //该方法中,我们将指定输出参数的名称和参数类型:
    @Override
    public StructObjectInspector initialize(StructObjectInspector argOIs) throws UDFArgumentException {
        ArrayList<String> fieldNames = new ArrayList<String>();
        ArrayList<ObjectInspector> fieldTypes = new ArrayList<>();

        fieldNames.add("event_name");
        fieldTypes.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);
        fieldNames.add("event_json");
        fieldTypes.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);
        return ObjectInspectorFactory.getStandardStructObjectInspector(fieldNames, fieldTypes);
    }
    //输入 1 条记录,输出若干条结果
    @Override
    public void process(Object[] objects) throws HiveException {
        // 获取传入的 et
        String et = objects[0].toString();
        // 如果传进来的数据为空,直接返回过滤掉该数据
        if(StringUtils.isBlank(et)){
            return;
        }else{
            JSONArray ja = new JSONArray(et);
            if (ja == null)
                return;

            String[] result = new String[2];
            try{
                // 循环遍历每一个事件
                for (int i = 0; i < ja.length(); i++) {

                    // 取出每个的事件名称(ad/facoriters)
                    result[0] = ja.getJSONObject(i).getString("en");
                    // 取出每一个事件整体
                    result[1] = ja.getString(i);
                }
                forward(result);
            }catch (JSONException e){
                e.printStackTrace();
            }
        }
    }

    //当没有记录处理的时候该方法会被调用,用来清理代码或者产生额外的输出
    @Override
    public void close() throws HiveException {

    }
}
  1. 打包上传到HDFS中
sh
[jack@hadoop102 software]$ hadoop fs -mkdir -p /user/hive/jars
[jack@hadoop102 software]$ hadoop fs -put hivefunctions-1.0-SNAPSHOT.jar /user/hive/jars
  1. 创建永久函数
sql
create function base_analizer as 'com.rocket.hive.functions.BaseFieldUdfFunction' using jar 'hdfs://hadoop102:8020/user/hive/jars/hivefunctions-1.0-SNAPSHOT.jar';
create function flat_analizer AS 'com.rocket.hive.functions.EventJsonUDTF' using jar 'hdfs://hadoop102:8020/user/hive/jars/	hivefunctions-1.0-SNAPSHOT.jar';

提示

如果修改了自定义函数重新生成 jar 包怎么处理?
只需要替换HDFS路径上的旧jar包,然后重启Hive客户端即可。

  1. 导入数据sql编写
sql
INSERT overwrite TABLE dwd_base_event_log partition(dt='2020-03-12') 
SELECT 
    base_analizer(line,'mid') as mid_id,
    base_analizer(line,'uid') as user_id,
    base_analizer(line,'vc') as version_code,
    base_analizer(line,'vn') as version_name,
    base_analizer(line,'l') as lang,
    base_analizer(line,'sr') as source,
    base_analizer(line,'os') as os,
    base_analizer(line,'ar') as area,
    base_analizer(line,'md') as model,
    base_analizer(line,'ba') as brand,
    base_analizer(line,'sv') as sdk_version,
    base_analizer(line,'g') as gmail,
    base_analizer(line,'hw') as height_width,
    base_analizer(line,'t') as app_time,
    base_analizer(line,'nw') as network,
    base_analizer(line,'ln') as lng,
    base_analizer(line,'la') as lat,
    event_name,
    event_json,
    base_analizer(line,'st') as server_time
FROM ods_event_log lateral view flat_analizer(base_analizer(line,'et')) tmp_flat AS event_name,event_json 
WHERE dt='2020-03-12';
  1. 测试数据是否导入 Alt text

4.6 DWD层数据解析脚本

  1. 在hadoop102的/home/jack/bin目录下创建脚本
sh
[jack@hadoop102 bin]$ vim ods_to_dwd_base_log.sh
# 在脚本中编写如下内容
#!/bin/bash
# 定义变量方便修改
APP=gmall
hive=/opt/module/hive-4.0.1/bin/hive
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$1" ] ;then
  do_date=$1
else
  do_date=`date -d "-1 day" +%F`
fi
sql="
use gmall;
insert overwrite table "$APP".dwd_base_event_log partition(dt='$do_date')
select
base_analizer(line,'mid') as mid_id,
base_analizer(line,'uid') as user_id,
base_analizer(line,'vc') as version_code,
base_analizer(line,'vn') as version_name,
base_analizer(line,'l') as lang,
base_analizer(line,'sr') as source,
base_analizer(line,'os') as os,
base_analizer(line,'ar') as area,
base_analizer(line,'md') as model,
base_analizer(line,'ba') as brand,
base_analizer(line,'sv') as sdk_version,
base_analizer(line,'g') as gmail,
base_analizer(line,'hw') as height_width,
base_analizer(line,'t') as app_time,
base_analizer(line,'nw') as network,
base_analizer(line,'ln') as lng,
base_analizer(line,'la') as lat,
event_name,
event_json,
base_analizer(line,'st') as server_time
from "$APP".ods_event_log lateral view flat_analizer(base_analizer(line,'et')) tem_flat as
event_name,event_json
where dt='$do_date' and base_analizer(line,'et')<>''; "
$hive -e "$sql"

警告

使用自定义函数时,需要在执行脚本前,增加上要使用的库。例如:use gmall;

  1. 增加脚本执行权限
sh
[jack@hadoop102 bin]$ chmod 777 ods_to_dwd_base_log.sh

4.7 DWD层(大屏显示表)

  1. 创建表
sql
drop table if exists dwd_display_log;
CREATE EXTERNAL TABLE dwd_display_log(
`mid_id` string,
`user_id` string,
`version_code` string,
`version_name` string,
`lang` string,
`source` string,
`os` string,
`area` string,
`model` string,
`brand` string,
`sdk_version` string,
`gmail` string,
`height_width` string,
`app_time` string,
`network` string,
`lng` string,
`lat` string,
`action` string,
`goodsid` string,
`place` string,
`extend1` string,
`category` string,
`server_time` string
)
PARTITIONED BY (dt string)
stored as parquet
location '/warehouse/gmall/dwd/dwd_display_log/'
TBLPROPERTIES('parquet.compression'='lzo');
  1. 导入数据
sql
insert overwrite table dwd_display_log PARTITION (dt='2020-03-12')
select
mid_id,
user_id,
version_code,
version_name,
lang,
source,
os,
area,
model,
brand,
sdk_version,
gmail,
height_width,
app_time,
network,
lng,
lat,
get_json_object(event_json,'$.kv.action') action,
get_json_object(event_json,'$.kv.goodsid') goodsid,
get_json_object(event_json,'$.kv.place') place,
get_json_object(event_json,'$.kv.extend1') extend1,
get_json_object(event_json,'$.kv.category') category,
server_time
from dwd_base_event_log
where dt='2020-03-12' and event_name='display';

4.8 商品详情页表

  1. 建表语句
sql
drop table if exists dwd_newsdetail_log;
CREATE EXTERNAL TABLE dwd_newsdetail_log(
`mid_id` string,
`user_id` string,
`version_code` string,
`version_name` string,
`lang` string,
`source` string,
`os` string,
`area` string,
`model` string,
`brand` string,
`sdk_version` string,
`gmail` string,
`height_width` string,
`app_time` string,
`network` string,
`lng` string,
`lat` string,
`entry` string,
`action` string,
`goodsid` string,
`showtype` string,
`news_staytime` string,
`loading_time` string,
`type1` string,
`category` string,
`server_time` string)
PARTITIONED BY (dt string)
stored as parquet
location '/warehouse/gmall/dwd/dwd_newsdetail_log/'
TBLPROPERTIES('parquet.compression'='lzo');
  1. 导入数据
sql
insert overwrite table dwd_newsdetail_log PARTITION (dt='2020-03-10')
select
mid_id,
user_id,
version_code,
version_name,
lang,
source,
os,
area,
model,
brand,
sdk_version,
gmail,
height_width,
app_time,
network,
lng,
lat,
get_json_object(event_json,'$.kv.entry') entry,
get_json_object(event_json,'$.kv.action') action,
get_json_object(event_json,'$.kv.goodsid') goodsid,
get_json_object(event_json,'$.kv.showtype') showtype,
get_json_object(event_json,'$.kv.news_staytime') news_staytime,
get_json_object(event_json,'$.kv.loading_time') loading_time,
get_json_object(event_json,'$.kv.type1') type1,
get_json_object(event_json,'$.kv.category') category,
server_time
from dwd_base_event_log
where dt='2020-03-10' and event_name='newsdetail';

4.9 商品列表页表

  1. 建表语句
sql
drop table if exists dwd_loading_log;
CREATE EXTERNAL TABLE dwd_loading_log(
`mid_id` string,
`user_id` string,
`version_code` string,
`version_name` string,
`lang` string,
`source` string,
`os` string,
`area` string,
`model` string,
`brand` string,
`sdk_version` string,
`gmail` string,
`height_width` string,
`app_time` string,
`network` string,
`lng` string,
`lat` string,
`action` string,
`loading_time` string,
`loading_way` string,
`extend1` string,
`extend2` string,
`type` string,
`type1` string,
`server_time` string)
PARTITIONED BY (dt string)
stored as parquet
location '/warehouse/gmall/dwd/dwd_loading_log/'
TBLPROPERTIES('parquet.compression'='lzo');
  1. 导入数据
sql
insert overwrite table dwd_loading_log PARTITION (dt='2020-03-10')
select
mid_id,
user_id,
version_code,
version_name,
lang,
source,
os,
area,
model,
brand,
sdk_version,
gmail,
height_width,
app_time,
network,
lng,
lat,
get_json_object(event_json,'$.kv.action') action,
get_json_object(event_json,'$.kv.loading_time') loading_time,
get_json_object(event_json,'$.kv.loading_way') loading_way,
get_json_object(event_json,'$.kv.extend1') extend1,
get_json_object(event_json,'$.kv.extend2') extend2,
get_json_object(event_json,'$.kv.type') type,
get_json_object(event_json,'$.kv.type1') type1,
server_time
from dwd_base_event_log
where dt='2020-03-10' and event_name='loading';

4.10 广告表

  1. 建表语句
sql
drop table if exists dwd_ad_log;
CREATE EXTERNAL TABLE dwd_ad_log(
`mid_id` string,
`user_id` string,
`version_code` string,
`version_name` string,
`lang` string,
`source` string,
`os` string,
`area` string,
`model` string,
`brand` string,
`sdk_version` string,
`gmail` string,
`height_width` string,
`app_time` string,
`network` string,
`lng` string,
`lat` string,
`entry` string,
`action` string,
`contentType` string,
`displayMills` string,
`itemId` string,
`activityId` string,
`server_time` string)
PARTITIONED BY (dt string)
stored as parquet
location '/warehouse/gmall/dwd/dwd_ad_log/'
TBLPROPERTIES('parquet.compression'='lzo');
  1. 导入数据
sql
select
mid_id,
user_id,
version_code,
version_name,
lang,
source,
os,
area,
model,
brand,
sdk_version,
gmail,
height_width,
app_time,
network,
lng,
lat,
get_json_object(event_json,'$.kv.entry') entry,
get_json_object(event_json,'$.kv.action') action,
get_json_object(event_json,'$.kv.contentType') contentType,
get_json_object(event_json,'$.kv.displayMills') displayMills,
get_json_object(event_json,'$.kv.itemId') itemId,
get_json_object(event_json,'$.kv.activityId') activityId,
server_time
from dwd_base_event_log
where dt='2020-03-10' and event_name='ad';

4.12 消息通知表

  1. 建表语句
sql
drop table if exists dwd_notification_log;
CREATE EXTERNAL TABLE dwd_notification_log(
`mid_id` string,
`user_id` string,
`version_code` string,
`version_name` string,
`lang` string,
`source` string,
`os` string,
`area` string,
`model` string,
`brand` string,
`sdk_version` string,
`gmail` string,
`height_width` string,
`app_time` string,
`network` string,
`lng` string,
`lat` string,
`action` string,
`noti_type` string,
`ap_time` string,
`content` string,
`server_time` string
)
PARTITIONED BY (dt string)
stored as parquet
location '/warehouse/gmall/dwd/dwd_notification_log/'
TBLPROPERTIES('parquet.compression'='lzo');
  1. 导入数据
sql
insert overwrite table dwd_notification_log PARTITION (dt='2020-03-10')
select
mid_id,
user_id,
version_code,
version_name,
lang,
source,
os,
area,
model,
brand,
sdk_version,
gmail,
height_width,
app_time,
network,
lng,
lat,
get_json_object(event_json,'$.kv.action') action,
get_json_object(event_json,'$.kv.noti_type') noti_type,
get_json_object(event_json,'$.kv.ap_time') ap_time,
get_json_object(event_json,'$.kv.content') content,
server_time
from dwd_base_event_log
where dt='2020-03-10' and event_name='notification';

4.13 用户后台活跃表

  1. 建表语句
sql
drop table if exists dwd_active_background_log;
CREATE EXTERNAL TABLE dwd_active_background_log(
`mid_id` string,
`user_id` string,
`version_code` string,
`version_name` string,
`lang` string,
`source` string,
`os` string,
`area` string,
`model` string,
`brand` string,
`sdk_version` string,
`gmail` string,
`height_width` string,
`app_time` string,
`network` string,
`lng` string,
`lat` string,
`active_source` string,
`server_time` string
)
PARTITIONED BY (dt string)
stored as parquet
location '/warehouse/gmall/dwd/dwd_background_log/'
TBLPROPERTIES('parquet.compression'='lzo');
  1. 导入数据
sql
insert overwrite table dwd_active_background_log PARTITION
(dt='2020-03-10')
select
mid_id,
user_id,
version_code,
version_name,
lang,
source,
os,
area,
model,
brand,
sdk_version,
gmail,
height_width,
app_time,
network,
lng,
lat,
get_json_object(event_json,'$.kv.active_source') active_source,
server_time
from dwd_base_event_log
where dt='2020-03-10' and event_name='active_background';

4.14 评论表

  1. 建表语句
sql
drop table if exists dwd_comment_log;
CREATE EXTERNAL TABLE dwd_comment_log(
`mid_id` string,
`user_id` string,
`version_code` string,
`version_name` string,
`lang` string,
`source` string,
`os` string,
`area` string,
`model` string,
`brand` string,
`sdk_version` string,
`gmail` string,
`height_width` string,
`app_time` string,
`network` string,
`lng` string,
`lat` string,
`comment_id` int,
`userid` int,
`p_comment_id` int,
`content` string,
`addtime` string,
`other_id` int,
`praise_count` int,
`reply_count` int,
`server_time` string
)
PARTITIONED BY (dt string)
stored as parquet
location '/warehouse/gmall/dwd/dwd_comment_log/'
TBLPROPERTIES('parquet.compression'='lzo');
  1. 导入数据
sql
insert overwrite table dwd_comment_log PARTITION (dt='2020-03-10')
select
mid_id,
user_id,
version_code,
version_name,
lang,
source,
os,
area,
model,
brand,
sdk_version,
gmail,
height_width,
app_time,
network,
lng,
lat,
get_json_object(event_json,'$.kv.comment_id') comment_id,
get_json_object(event_json,'$.kv.userid') userid,
get_json_object(event_json,'$.kv.p_comment_id') p_comment_id,
get_json_object(event_json,'$.kv.content') content,
get_json_object(event_json,'$.kv.addtime') addtime,
get_json_object(event_json,'$.kv.other_id') other_id,
get_json_object(event_json,'$.kv.praise_count') praise_count,
get_json_object(event_json,'$.kv.reply_count') reply_count,
server_time
from dwd_base_event_log
where dt='2020-03-10' and event_name='comment';

4.15 收藏表

  1. 建表语句
sql
drop table if exists dwd_favorites_log;
CREATE EXTERNAL TABLE dwd_favorites_log(
`mid_id` string,
`user_id` string,
`version_code` string,
`version_name` string,
`lang` string,
`source` string,
`os` string,
`area` string,
`model` string,
`brand` string,
`sdk_version` string,
`gmail` string,
`height_width` string,
`app_time` string,
`network` string,
`lng` string,
`lat` string,
`id` int,
`course_id` int,
`userid` int,
`add_time` string,
`server_time` string
)
PARTITIONED BY (dt string)
stored as parquet
location '/warehouse/gmall/dwd/dwd_favorites_log/'
TBLPROPERTIES('parquet.compression'='lzo');
  1. 导入数据
sql
insert overwrite table dwd_favorites_log PARTITION (dt='2020-03-10')
select
mid_id,
user_id,
version_code,
version_name,
lang,
source,
os,
area,
model,
brand,
sdk_version,
gmail,
height_width,
app_time,
network,
lng,
lat,
get_json_object(event_json,'$.kv.id') id,
get_json_object(event_json,'$.kv.course_id') course_id,
get_json_object(event_json,'$.kv.userid') userid,
get_json_object(event_json,'$.kv.add_time') add_time,
server_time
from dwd_base_event_log
where dt='2020-03-10' and event_name='favorites';

4.16 点赞表

  1. 建表语句
sql
drop table if exists dwd_praise_log;
CREATE EXTERNAL TABLE dwd_praise_log(
`mid_id` string,
`user_id` string,
`version_code` string,
`version_name` string,
`lang` string,
`source` string,
`os` string,
`area` string,
`model` string,
`brand` string,
`sdk_version` string,
`gmail` string,
`height_width` string,
`app_time` string,
`network` string,
`lng` string,
`lat` string,
`id` string,
`userid` string,
`target_id` string,
`type` string,
`add_time` string,
`server_time` string
)
PARTITIONED BY (dt string)
stored as parquet
location '/warehouse/gmall/dwd/dwd_praise_log/'
TBLPROPERTIES('parquet.compression'='lzo');
  1. 导入数据
sql
insert overwrite table dwd_praise_log PARTITION (dt='2020-03-10')
select
mid_id,
user_id,
version_code,
version_name,
lang,
source,
os,
area,
model,
brand,
sdk_version,
gmail,
height_width,
app_time,
network,
lng,
lat,
get_json_object(event_json,'$.kv.id') id,
get_json_object(event_json,'$.kv.userid') userid,
get_json_object(event_json,'$.kv.target_id') target_id,
get_json_object(event_json,'$.kv.type') type,
get_json_object(event_json,'$.kv.add_time') add_time,
server_time
from dwd_base_event_log
where dt='2020-03-10' and event_name='praise';

4.17 错误日志表

  1. 建表语句
sql
drop table if exists dwd_error_log;
CREATE EXTERNAL TABLE dwd_error_log(
`mid_id` string,
`user_id` string,
`version_code` string,
`version_name` string,
`lang` string,
`source` string,
`os` string,
`area` string,
`model` string,
`brand` string,
`sdk_version` string,
`gmail` string,
`height_width` string,
`app_time` string,
`network` string,
`lng` string,
`lat` string,
`errorBrief` string,
`errorDetail` string,
`server_time` string)
PARTITIONED BY (dt string)
stored as parquet
location '/warehouse/gmall/dwd/dwd_error_log/'
TBLPROPERTIES('parquet.compression'='lzo');
  1. 导入数据
sql
insert overwrite table dwd_error_log PARTITION (dt='2020-03-10')
select
mid_id,
user_id,
version_code,
version_name,
lang,
source,
os,
area,
model,
brand,
sdk_version,
gmail,
height_width,
app_time,
network,
lng,
lat,
get_json_object(event_json,'$.kv.errorBrief') errorBrief,
get_json_object(event_json,'$.kv.errorDetail') errorDetail,
server_time
from dwd_base_event_log
where dt='2020-03-10' and event_name='error';

4.18 DWD层事件表加载数据脚本

  1. 在hadoop102的/home/jack/bin目录下创建脚本
sh
[jack@hadoop102 bin]$ vim ods_to_dwd_event_log.sh
## 内容和之前大体相同
  1. 增加脚本执行权限
sh
chmod 777 ods_to_dwd_event_log.sh

5. DWD层(业务数据)

Alt text

5.1 商品维度表(全量表)

  1. 建表脚本
sql
DROP TABLE IF EXISTS `dwd_dim_sku_info`;
CREATE EXTERNAL TABLE `dwd_dim_sku_info` (
`id` string COMMENT '商品 id',
`spu_id` string COMMENT 'spuid',
`price` double COMMENT '商品价格',
`sku_name` string COMMENT '商品名称',
`sku_desc` string COMMENT '商品描述',
`weight` double COMMENT '重量',
`tm_id` string COMMENT '品牌 id',
`tm_name` string COMMENT '品牌名称',
`category3_id` string COMMENT '三级分类 id',
`category2_id` string COMMENT '二级分类 id',
`category1_id` string COMMENT '一级分类 id',
`category3_name` string COMMENT '三级分类名称',
`category2_name` string COMMENT '二级分类名称',
`category1_name` string COMMENT '一级分类名称',
`spu_name` string COMMENT 'spu 名称',
`create_time` string COMMENT '创建时间'
)
COMMENT '商品维度表'
PARTITIONED BY (`dt` string)
stored as parquet
location '/warehouse/gmall/dwd/dwd_dim_sku_info'
tblproperties ("parquet.compression"="lzo");
  1. 导入数据
sql
insert overwrite table dwd_dim_sku_info partition(dt='2020-03-10')
select
sku.id,
sku.spu_id,
sku.price,
sku.sku_name,
sku.sku_desc,
sku.weight,
sku.tm_id,
ob.tm_name,
sku.category3_id,
c2.id category2_id,
c1.id category1_id,
c3.name category3_name,
c2.name category2_name,
c1.name category1_name,
spu.spu_name,
sku.create_time
from
(
select * from ods_sku_info where dt='2020-03-10'
)sku
join
(
select * from ods_base_trademark where dt='2020-03-10'
)ob on sku.tm_id=ob.tm_id
join
(
select * from ods_spu_info where dt='2020-03-10'
)spu on spu.id = sku.spu_id
join
(
select * from ods_base_category3 where dt='2020-03-10'
)c3 on sku.category3_id=c3.id
join
(
select * from ods_base_category2 where dt='2020-03-10'
)c2 on c3.category2_id=c2.id
join
(
select * from ods_base_category1 where dt='2020-03-10'
)c1 on c2.category1_id=c1.id;

5.2 优惠券信息表(全量)

  1. 建表脚本
sh

drop table if exists dwd_dim_coupon_info;
create external table dwd_dim_coupon_info(
`id` string COMMENT '购物券编号',
`coupon_name` string COMMENT '购物券名称',
`coupon_type` string COMMENT '购物券类型 1 现金券 2 折扣券 3 满减券 4 满件打折券',
`condition_amount` string COMMENT '满额数',
`condition_num` string COMMENT '满件数',
`activity_id` string COMMENT '活动编号',
`benefit_amount` string COMMENT '减金额',
`benefit_discount` string COMMENT '折扣',
`create_time` string COMMENT '创建时间',
`range_type` string COMMENT '范围类型 1、商品 2、品类 3、品牌',
`spu_id` string COMMENT '商品 id',
`tm_id` string COMMENT '品牌 id',
`category3_id` string COMMENT '品类 id',
`limit_num` string COMMENT '最多领用次数',
`operate_time` string COMMENT '修改时间',
`expire_time` string COMMENT '过期时间'
) COMMENT '优惠券信息表'
PARTITIONED BY (`dt` string)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/gmall/dwd/dwd_dim_coupon_info/'
tblproperties ("parquet.compression"="lzo");
  1. 导入数据
sql
insert overwrite table dwd_dim_coupon_info partition(dt='2020-03-10')
select
id,
coupon_name,
coupon_type,
condition_amount,
condition_num,
activity_id,
benefit_amount,
benefit_discount,
create_time,
range_type,
spu_id,
tm_id,
category3_id,
limit_num,
operate_time,
expire_time
from ods_coupon_info
where dt='2020-03-10';

5.3 活动维度表(全量)

  1. 建表脚本
sh
drop table if exists dwd_dim_activity_info;
create external table dwd_dim_activity_info(
`id` string COMMENT '编号',
`activity_name` string COMMENT '活动名称',
`activity_type` string COMMENT '活动类型',
`condition_amount` string COMMENT '满减金额',
`condition_num` string COMMENT '满减件数',
`benefit_amount` string COMMENT '优惠金额',
`benefit_discount` string COMMENT '优惠折扣',
`benefit_level` string COMMENT '优惠级别',
`start_time` string COMMENT '开始时间',
`end_time` string COMMENT '结束时间',
`create_time` string COMMENT '创建时间'
) COMMENT '活动信息表'
PARTITIONED BY (`dt` string)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/gmall/dwd/dwd_dim_activity_info/';
tblproperties ("parquet.compression"="lzo");
  1. 导入数据
sql
insert overwrite table dwd_dim_activity_info partition(dt='2020-03-10')
SELECT
info.id,
info.activity_name,
info.activity_type,
rule.condition_amount,
rule.condition_num,
rule.benefit_amount,
rule.benefit_discount,
rule.benefit_level,
info.start_time,
info.end_time,
info.create_time
from
(
select * from ods_activity_info where dt='2020-03-10'
)info
left join
(
select * from ods_activity_rule where dt='2020-03-10'
)rule on info.id = rule.activity_id;

5.3 地区维度表(特殊)

  1. 地区维度表不是分区表,下面是建表脚本:
sql
DROP TABLE IF EXISTS `dwd_dim_base_province`;
CREATE EXTERNAL TABLE `dwd_dim_base_province` (
`id` string COMMENT 'id',
`province_name` string COMMENT '省市名称',
`area_code` string COMMENT '地区编码',
`iso_code` string COMMENT 'ISO 编码',
`region_id` string COMMENT '地区 id',
`region_name` string COMMENT '地区名称'
)
COMMENT '地区省市表'
stored as parquet
location '/warehouse/gmall/dwd/dwd_dim_base_province/'
tblproperties ("parquet.compression"="lzo");
  1. 导入数据
sql
insert overwrite table dwd_dim_base_province
select
bp.id,
bp.name,
bp.area_code,
bp.iso_code,
bp.region_id,
br.region_name
from ods_base_province bp
join ods_base_region br
on bp.region_id=br.id;

5.4 时间维度表(特殊)

sql
DROP TABLE IF EXISTS `dwd_dim_date_info`;
CREATE EXTERNAL TABLE `dwd_dim_date_info`(
`date_id` string COMMENT '日',
`week_id` int COMMENT '周',
`week_day` int COMMENT '周的第几天',
`day` int COMMENT '每月的第几天',
`month` int COMMENT '第几月',
`quarter` int COMMENT '第几季度',
`year` int COMMENT '年',
`is_workday` int COMMENT '是否是周末',
`holiday_id` int COMMENT '是否是节假日'
)
row format delimited fields terminated by '\t'
stored as textfile
location '/warehouse/gmall/dwd/dwd_dim_date_info/';
  1. 把date_info.txt文件上传到hadoop102的/opt/software/db_log/路径
  2. 数据装载
sql
load data local inpath '/opt/software/date_info.txt' into table dwd_dim_date_info;

5.5 订单明细事实表(事务型快照事实表)

Alt text

  1. 建表脚本
sql
drop table if exists dwd_fact_order_detail;
create external table dwd_fact_order_detail (
`id` string COMMENT '订单编号',
`order_id` string COMMENT '订单号',
`user_id` string COMMENT '用户 id',
`sku_id` string COMMENT 'sku 商品 id',
`sku_name` string COMMENT '商品名称',
`order_price` decimal(10,2) COMMENT '商品价格',
`sku_num` bigint COMMENT '商品数量',
`create_time` string COMMENT '创建时间',
`province_id` string COMMENT '省份 ID',
`total_amount` decimal(20,2) COMMENT '订单总金额'
)
PARTITIONED BY (`dt` string)
stored as parquet
location '/warehouse/gmall/dwd/dwd_fact_order_detail/'
tblproperties ("parquet.compression"="lzo");
sql
insert overwrite table dwd_fact_order_detail partition(dt='2020-03-10')
select
od.id,
od.order_id,
od.user_id,
od.sku_id,
od.sku_name,
od.order_price,
od.sku_num,
od.create_time,
oi.province_id,
od.order_price*od.sku_num
from
(
select * from ods_order_detail where dt='2020-03-10'
) od
join
(
select * from ods_order_info where dt='2020-03-10'
) oi
on od.order_id=oi.id;

5.6 支付事实表(事务型快照事实表)

Alt text

  1. 建表语句
sql
drop table if exists dwd_fact_payment_info;
create external table dwd_fact_payment_info (
`id` string COMMENT '',
`out_trade_no` string COMMENT '对外业务编号',
`order_id` string COMMENT '订单编号',
`user_id` string COMMENT '用户编号',
`alipay_trade_no` string COMMENT '支付宝交易流水编号',
`payment_amount` decimal(16,2) COMMENT '支付金额',
`subject` string COMMENT '交易内容',
`payment_type` string COMMENT '支付类型',
`payment_time` string COMMENT '支付时间',
`province_id` string COMMENT '省份 ID'
)
PARTITIONED BY (`dt` string)
stored as parquet
location '/warehouse/gmall/dwd/dwd_fact_payment_info/'
tblproperties ("parquet.compression"="lzo");
  1. 数据装载
sql
insert overwrite table dwd_fact_payment_info partition(dt='2020-03-10')
select
pi.id,
pi.out_trade_no,
pi.order_id,
pi.user_id,
pi.alipay_trade_no,
pi.total_amount,
pi.subject,
pi.payment_type,
pi.payment_time,
oi.province_id
from
(
select * from ods_payment_info where dt='2020-03-10'
)pi
join
(
select id, province_id from ods_order_info where dt='2020-03-10'
)oi
on pi.order_id = oi.id;

5.7 退款事实表(事务型快照事实表)

Alt text

  1. 建表语句
sh
drop table if exists dwd_fact_order_refund_info;
create external table dwd_fact_order_refund_info(
`id` string COMMENT '编号',
`user_id` string COMMENT '用户 ID',
`order_id` string COMMENT '订单 ID',
`sku_id` string COMMENT '商品 ID',
`refund_type` string COMMENT '退款类型',
`refund_num` bigint COMMENT '退款件数',
`refund_amount` decimal(16,2) COMMENT '退款金额',
`refund_reason_type` string COMMENT '退款原因类型',
`create_time` string COMMENT '退款时间'
) COMMENT '退款事实表'
PARTITIONED BY (`dt` string)
row format delimited fields terminated by '\t'
location '/warehouse/gmall/dwd/dwd_fact_order_refund_info/';
  1. 数据装载
sql
insert overwrite table dwd_fact_order_refund_info partition(dt='2020-03-10')
select
id,
user_id,
order_id,
sku_id,
refund_type,
refund_num,
refund_amount,
refund_reason_type,
create_time
from ods_order_refund_info
where dt='2020-03-10';

5.8 评价事实表(事务型快照事实表)

Alt text

  1. 建表脚本
sql
drop table if exists dwd_fact_comment_info;
create external table dwd_fact_comment_info(
`id` string COMMENT '编号',
`user_id` string COMMENT '用户 ID',
`sku_id` string COMMENT '商品 sku',
`spu_id` string COMMENT '商品 spu',
`order_id` string COMMENT '订单 ID',
`appraise` string COMMENT '评价',
`create_time` string COMMENT '评价时间'
) COMMENT '评价事实表'
PARTITIONED BY (`dt` string)
row format delimited fields terminated by '\t'
location '/warehouse/gmall/dwd/dwd_fact_comment_info/';
  1. 数据装载
sql
insert overwrite table dwd_fact_comment_info partition(dt='2020-03-10')
select
id,
user_id,
sku_id,
spu_id,
order_id,
appraise,
create_time
from ods_comment_info
where dt='2020-03-10';

5.9 加购事实表(周期型快照事实表,每日快照)

由于购物车的数量是会发生变化,所以只导增量不合适。
每天做一次快照,导入的数据是全量,区别于事务型事实表是每天导入新增
周期型快照事实表劣势:存储的数据量会比较大。
解决方案:周期型快照事实表存储的数据比较讲究时效性,时间太久了的意义不大,可 以删除以前的数据。 Alt text

  1. 建表脚本
sh
drop table if exists dwd_fact_cart_info;
create external table dwd_fact_cart_info(
`id` string COMMENT '编号',
`user_id` string COMMENT '用户 id',
`sku_id` string COMMENT 'skuid',
`cart_price` string COMMENT '放入购物车时价格',
`sku_num` string COMMENT '数量',
`sku_name` string COMMENT 'sku 名称 (冗余)',
`create_time` string COMMENT '创建时间',
`operate_time` string COMMENT '修改时间',
`is_ordered` string COMMENT '是否已经下单。1 为已下单;0 为未下单',
`order_time` string COMMENT '下单时间'
) COMMENT '加购事实表'
PARTITIONED BY (`dt` string)
row format delimited fields terminated by '\t'
location '/warehouse/gmall/dwd/dwd_fact_cart_info/';

5.10 收藏事实表(周期型快照事实表,每日快照)

收藏的标记,是否取消,会发生变化,做增量不合适。
每天做一次快照,导入的数据是全量,区别于事务型事实表是每天导入新增。
Alt text

  1. 创建脚本
sql
drop table if exists dwd_fact_favor_info;
create external table dwd_fact_favor_info(
`id` string COMMENT '编号',
`user_id` string COMMENT '用户 id',
`sku_id` string COMMENT 'skuid',
`spu_id` string COMMENT 'spuid',
`is_cancel` string COMMENT '是否取消',
`create_time` string COMMENT '收藏时间',
`cancel_time` string COMMENT '取消时间'
) COMMENT '收藏事实表'
PARTITIONED BY (`dt` string)
row format delimited fields terminated by '\t'
location '/warehouse/gmall/dwd/dwd_fact_favor_info/';
  1. 数据导入
sql
insert overwrite table dwd_fact_favor_info partition(dt='2020-03-10')
select
id,
user_id,
sku_id,
spu_id,
is_cancel,
create_time,
cancel_time
from ods_favor_info
where dt='2020-03-10';

5.11 优惠券领用事实表(累积型快照事实表)

Alt text 优惠券的生命周期:领取优惠券-》用优惠券下单-》优惠券参与支付。
累积型快照事实表使用:统计优惠券领取次数、优惠券下单次数、优惠券参与支付次数。
dt是按照优惠券领用时间get_time作为分区, 另外ods_coupon_use是从mysql每日按照get_time|using_time|used_time来匹配抽取过来。
Alt text

  1. 建表脚本
sql
drop table if exists dwd_fact_coupon_use;
create external table dwd_fact_coupon_use(
`id` string COMMENT '编号',
`coupon_id` string COMMENT '优惠券 ID',
`user_id` string COMMENT 'userid',
`order_id` string COMMENT '订单 id',
`coupon_status` string COMMENT '优惠券状态',
`get_time` string COMMENT '领取时间',
`using_time` string COMMENT '使用时间(下单)',
`used_time` string COMMENT '使用时间(支付)'
) COMMENT '优惠券领用事实表'
PARTITIONED BY (`dt` string)
row format delimited fields terminated by '\t'
location '/warehouse/gmall/dwd/dwd_fact_coupon_use/';
  1. 数据装载,利用动态分区
sql
set hive.exec.dynamic.partition.mode=nonstrict;
insert overwrite table dwd_fact_coupon_use partition(dt)
select
if(new.id is null,old.id,new.id),
if(new.coupon_id is null,old.coupon_id,new.coupon_id),
if(new.user_id is null,old.user_id,new.user_id),
if(new.order_id is null,old.order_id,new.order_id),
if(new.coupon_status is null,old.coupon_status,new.coupon_status),
if(new.get_time is null,old.get_time,new.get_time),
if(new.using_time is null,old.using_time,new.using_time),
if(new.used_time is null,old.used_time,new.used_time),
date_format(if(new.get_time is null,old.get_time,new.get_time),'yyyy-MM-dd')
from
(
select
	id,
	coupon_id,
	user_id,
	order_id,
	coupon_status,
	get_time,
	using_time,
	used_time
from dwd_fact_coupon_use
where dt in
(
	select
		date_format(get_time,'yyyy-MM-dd')
		from ods_coupon_use
	where dt='2020-03-10'
)
)old
full outer join
(
	select
		id,
		coupon_id,
		user_id,
		order_id,
		coupon_status,
		get_time,
		using_time,
		used_time
	from ods_coupon_use
	where dt='2020-03-10'
)new
on old.id=new.id;

5.12 订单事实表(累积型快照事实表)

Alt text 订单生命周期:创建时间=》支付时间=》取消时间=》完成时间=》退款时间=》退款完成时间。
由于ODS层订单表只有创建时间和操作时间两个状态,不能表达所有时间含义,所以需要关联订单状态表。订单事实表里面增加了活动id,所以需要关联活动订单表。

  1. 建表脚本
sql
drop table if exists dwd_fact_order_info;
create external table dwd_fact_order_info (
`id` string COMMENT '订单编号',
`order_status` string COMMENT '订单状态',
`user_id` string COMMENT '用户 id',
`out_trade_no` string COMMENT '支付流水号',
`create_time` string COMMENT '创建时间(未支付状态)',
`payment_time` string COMMENT '支付时间(已支付状态)',
`cancel_time` string COMMENT '取消时间(已取消状态)',
`finish_time` string COMMENT '完成时间(已完成状态)',
`refund_time` string COMMENT '退款时间(退款中状态)',
`refund_finish_time` string COMMENT '退款完成时间(退款完成状态)',
`province_id` string COMMENT '省份 ID',
`activity_id` string COMMENT '活动 ID',
`original_total_amount` string COMMENT '原价金额',
`benefit_reduce_amount` string COMMENT '优惠金额',
`feight_fee` string COMMENT '运费',
`final_total_amount` decimal(10,2) COMMENT '订单金额'
)
PARTITIONED BY (`dt` string)
stored as parquet
location '/warehouse/gmall/dwd/dwd_fact_order_info/'
tblproperties ("parquet.compression"="lzo");
  1. 数据装载, 累计型事实表都是拿业务起始时间作为分区值,比如这里使用create_time。
sql
set hive.exec.dynamic.partition.mode=nonstrict;
insert overwrite table dwd_fact_order_info partition(dt)
select
if(new.id is null,old.id,new.id),
if(new.order_status is null,old.order_status,new.order_status),
if(new.user_id is null,old.user_id,new.user_id),
if(new.out_trade_no is null,old.out_trade_no,new.out_trade_no),
if(new.tms['1001'] is null,old.create_time,new.tms['1001']),--1001 对应未支付状态
if(new.tms['1002'] is null,old.payment_time,new.tms['1002']),
if(new.tms['1003'] is null,old.cancel_time,new.tms['1003']),
if(new.tms['1004'] is null,old.finish_time,new.tms['1004']),
if(new.tms['1005'] is null,old.refund_time,new.tms['1005']),
if(new.tms['1006'] is null,old.refund_finish_time,new.tms['1006']),
if(new.province_id is null,old.province_id,new.province_id),
if(new.activity_id is null,old.activity_id,new.activity_id),
if(new.original_total_amount is
null,old.original_total_amount,new.original_total_amount),
if(new.benefit_reduce_amount is
null,old.benefit_reduce_amount,new.benefit_reduce_amount),
if(new.feight_fee is null,old.feight_fee,new.feight_fee),
if(new.final_total_amount is null,old.final_total_amount,new.final_total_amount),
date_format(if(new.tms['1001'] is
null,old.create_time,new.tms['1001']),'yyyy-MM-dd')
from
(
select
id,
order_status,
user_id,
out_trade_no,
create_time,
payment_time,
cancel_time,
finish_time,
refund_time,
refund_finish_time,
province_id,
activity_id,
original_total_amount,
benefit_reduce_amount,
feight_fee,
final_total_amount
from dwd_fact_order_info
where dt
in
(
select
date_format(create_time,'yyyy-MM-dd')
from ods_order_info
where dt='2020-03-10'
)
)old
full outer join
(
select
    info.id,
    info.order_status,
    info.user_id,
    info.out_trade_no,
    info.province_id,
    act.activity_id,
    log.tms,
    info.original_total_amount,
    info.benefit_reduce_amount,
    info.feight_fee,
    info.final_total_amount
from
(
select
    order_id,
    str_to_map(concat_ws(',',collect_set(concat(order_status,'=',operate_time))),',','=')
tms
from ods_order_status_log
where dt='2020-03-10'
group by order_id
)log
join
(
select * from ods_order_info where dt='2020-03-10'
)info
on log.order_id=info.id
left join
(
select * from ods_activity_order where dt='2020-03-10'
)act
on log.order_id=act.order_id
)new
on old.id=new.id;

5.13 用户维度表(拉链表)

用户表中的数据每日既有可能新增,也有可能修改,但修改频率并不高,属于缓慢变化维度,此处采用拉链表存储用户维度数据。对于拉链表不需要分区的。

  1. 建表脚本
sql
drop table if exists dwd_dim_user_info_his;
create external table dwd_dim_user_info_his(
    `id` string COMMENT '用户id',
    `name` string COMMENT '姓名', 
    `birthday` string COMMENT '生日',
    `gender` string COMMENT '性别',
    `email` string COMMENT '邮箱',
    `user_level` string COMMENT '用户等级',
    `create_time` string COMMENT '创建时间',
    `operate_time` string COMMENT '操作时间',
    `start_date`  string COMMENT '生效开始日期',
    `end_date`  string COMMENT '生效结束日期'
) COMMENT '用户拉链表'
stored as parquet
location '/warehouse/gmall/dwd/dwd_dim_user_info_his/'
tblproperties ("parquet.compression"="lzo");

-- 用户维度拉链临时表
drop table if exists dwd_dim_user_info_his_tmp;
create external table dwd_dim_user_info_his_tmp(
    `id` string COMMENT '用户id',
    `name` string COMMENT '姓名', 
    `birthday` string COMMENT '生日',
    `gender` string COMMENT '性别',
    `email` string COMMENT '邮箱',
    `user_level` string COMMENT '用户等级',
    `create_time` string COMMENT '创建时间',
    `operate_time` string COMMENT '操作时间',
    `start_date`  string COMMENT '生效开始日期',
    `end_date`  string COMMENT '生效结束日期'
) COMMENT '用户拉链临时表'
stored as parquet
location '/warehouse/gmall/dwd/dwd_dim_user_info_his_tmp/'
tblproperties ("parquet.compression"="lzo");
  1. 数据加载,一共三个步骤
sql
-- 1. 初始化用户拉链表
insert overwrite table dwd_dim_user_info_his
select
    id,
    name,
    birthday,
    gender,
    email,
    user_level,
    create_time,
    operate_time,
    '2020-03-10',
    '9999-99-99'
from ods_user_info oi
where oi.dt='2020-03-10';
-- 2. 用户拉链临时表
insert overwrite table dwd_dim_user_info_his_tmp
select * from 
(
    select 
        id,
        name,
        birthday,
        gender,
        email,
        user_level,
        create_time,
        operate_time,
        '2020-03-11' start_date,
        '9999-99-99' end_date
    from ods_user_info where dt='2020-03-11'
    union all 
    select 
        uh.id,
        uh.name,
        uh.birthday,
        uh.gender,
        uh.email,
        uh.user_level,
        uh.create_time,
        uh.operate_time,
        uh.start_date,
        if(ui.id is not null  and uh.end_date='9999-99-99', date_add(ui.dt,-1), uh.end_date) end_date
    from dwd_dim_user_info_his uh left join 
    (
        select
            *
        from ods_user_info
        where dt='2020-03-11'
    ) ui on uh.id=ui.id
)his 
order by his.id, start_date;
-- 3. 写入用户拉链正式表
insert overwrite table dwd_dim_user_info_his select * from dwd_dim_user_info_his_tmp;

6. DWD层数据导入脚本

  1. 在/home/jack/bin目录下创建脚本ods_to_dwd_db.sh
sh
[jack@hadoop102 bin]$ vim ods_to_dwd_db.sh
## 在脚本中填写如下内容
#!/bin/bash

APP=gmall
hive=/opt/module/hive/bin/hive

# 如果输入了日期参数,则取输入参数作为日期值;如果没有输入日期参数,则取当前时间的前一天作为日期值
if [ -n "$2" ] ;then
    do_date=$2
else 
    do_date=`date -d "-1 day" +%F`
fi

sql1="
set hive.exec.dynamic.partition.mode=nonstrict;

insert overwrite table ${APP}.dwd_dim_sku_info partition(dt='$do_date')
select  
    sku.id,
    sku.spu_id,
    sku.price,
    sku.sku_name,
    sku.sku_desc,
    sku.weight,
    sku.tm_id,
    ob.tm_name,
    sku.category3_id,
    c2.id category2_id,
    c1.id category1_id,
    c3.name category3_name,
    c2.name category2_name,
    c1.name category1_name,
    spu.spu_name,
    sku.create_time
from
(
    select * from ${APP}.ods_sku_info where dt='$do_date'
)sku
join
(
    select * from ${APP}.ods_base_trademark where dt='$do_date'
)ob on sku.tm_id=ob.tm_id
join
(
    select * from ${APP}.ods_spu_info where dt='$do_date'
)spu on spu.id = sku.spu_id
join 
(
    select * from ${APP}.ods_base_category3 where dt='$do_date'
)c3 on sku.category3_id=c3.id
join 
(
    select * from ${APP}.ods_base_category2 where dt='$do_date'
)c2 on c3.category2_id=c2.id 
join 
(
    select * from ${APP}.ods_base_category1 where dt='$do_date'
)c1 on c2.category1_id=c1.id;

insert overwrite table ${APP}.dwd_dim_coupon_info partition(dt='$do_date')
select
    id,
    coupon_name,
    coupon_type,
    condition_amount,
    condition_num,
    activity_id,
    benefit_amount,
    benefit_discount,
    create_time,
    range_type,
    spu_id,
    tm_id,
    category3_id,
    limit_num,
    operate_time,
    expire_time
from ${APP}.ods_coupon_info
where dt='$do_date';

insert overwrite table ${APP}.dwd_dim_activity_info partition(dt='$do_date')
select
    info.id,
    info.activity_name,
    info.activity_type,
    rule.condition_amount,
    rule.condition_num,
    rule.benefit_amount,
    rule.benefit_discount,
    rule.benefit_level,
    info.start_time,
    info.end_time,
    info.create_time
from 
(
    select * from ${APP}.ods_activity_info where dt='$do_date'
)info
left join
(
    select * from ${APP}.ods_activity_rule where dt='$do_date'
)rule on info.id = rule.activity_id;

insert overwrite table ${APP}.dwd_fact_order_detail partition(dt='$do_date')
select
    od.id,
    od.order_id,
    od.user_id,
    od.sku_id,
    od.sku_name,
    od.order_price,
    od.sku_num,
    od.create_time,
    oi.province_id,
    od.order_price*od.sku_num   
from 
(
    select * from ${APP}.ods_order_detail where dt='$do_date'
) od
join 
(
    select * from ${APP}.ods_order_info where dt='$do_date'
) oi
on od.order_id=oi.id;

insert overwrite table ${APP}.dwd_fact_payment_info partition(dt='$do_date')
select
    pi.id,
    pi.out_trade_no,
    pi.order_id,
    pi.user_id,
    pi.alipay_trade_no,
    pi.total_amount,
    pi.subject,
    pi.payment_type,
    pi.payment_time,          
    oi.province_id
from
(
    select * from ${APP}.ods_payment_info where dt='$do_date'
)pi
join
(
    select id, province_id from ${APP}.ods_order_info where dt='$do_date'
)oi
on pi.order_id = oi.id;

insert overwrite table ${APP}.dwd_fact_order_refund_info partition(dt='$do_
date')
select
    id,
    user_id,
    order_id,
    sku_id,
    refund_type,
    refund_num,
    refund_amount,
    refund_reason_type,
    create_time
from ${APP}.ods_order_refund_info
where dt='$do_date';

insert overwrite table ${APP}.dwd_fact_comment_info partition(dt='$do_date')
select
    id,
    user_id,
    sku_id,
    spu_id,
    order_id,
    appraise,
    create_time
from ${APP}.ods_comment_info
where dt='$do_date';

insert overwrite table ${APP}.dwd_fact_cart_info partition(dt='$do_date')
select
    id,
    user_id,
    sku_id,
    cart_price,
    sku_num,
    sku_name,
    create_time,
    operate_time,
    is_ordered,
    order_time
from ${APP}.ods_cart_info
where dt='$do_date';

insert overwrite table ${APP}.dwd_fact_favor_info partition(dt='$do_date')
select
    id,
    user_id,
    sku_id,
    spu_id,
    is_cancel,
    create_time,
    cancel_time
from ${APP}.ods_favor_info
where dt='$do_date';

insert overwrite table ${APP}.dwd_fact_coupon_use partition(dt)
select
    if(new.id is null,old.id,new.id),
    if(new.coupon_id is null,old.coupon_id,new.coupon_id),
    if(new.user_id is null,old.user_id,new.user_id),
    if(new.order_id is null,old.order_id,new.order_id),
    if(new.coupon_status is null,old.coupon_status,new.coupon_status),
    if(new.get_time is null,old.get_time,new.get_time),
    if(new.using_time is null,old.using_time,new.using_time),
    if(new.used_time is null,old.used_time,new.used_time),
    date_format(if(new.get_time is null,old.get_time,new.get_time),'yyyy-MM-dd')
from
(
    select
        id,
        coupon_id,
        user_id,
        order_id,
        coupon_status,
        get_time,
        using_time,
        used_time
    from ${APP}.dwd_fact_coupon_use
    where dt in
    (
        select
            date_format(get_time,'yyyy-MM-dd')
        from ${APP}.ods_coupon_use
        where dt='$do_date'
    )
)old
full outer join
(
    select
        id,
        coupon_id,
        user_id,
        order_id,
        coupon_status,
        get_time,
        using_time,
        used_time
    from ${APP}.ods_coupon_use
    where dt='$do_date'
)new
on old.id=new.id;


insert overwrite table ${APP}.dwd_fact_order_info partition(dt)
select
    if(new.id is null,old.id,new.id),
    if(new.order_status is null,old.order_status,new.order_status),
    if(new.user_id is null,old.user_id,new.user_id),
    if(new.out_trade_no is null,old.out_trade_no,new.out_trade_no),
    if(new.tms['1001'] is null,old.create_time,new.tms['1001']),--1001对应未支付状态
    if(new.tms['1002'] is null,old.payment_time,new.tms['1002']),
    if(new.tms['1003'] is null,old.cancel_time,new.tms['1003']),
    if(new.tms['1004'] is null,old.finish_time,new.tms['1004']),
    if(new.tms['1005'] is null,old.refund_time,new.tms['1005']),
    if(new.tms['1006'] is null,old.refund_finish_time,new.tms['1006']),
    if(new.province_id is null,old.province_id,new.province_id),
    if(new.activity_id is null,old.activity_id,new.activity_id),
    if(new.original_total_amount is null,old.original_total_amount,new.original_
total_amount),
    if(new.benefit_reduce_amount is null,old.benefit_reduce_amount,new.benefit_
reduce_amount),
    if(new.feight_fee is null,old.feight_fee,new.feight_fee),
    if(new.final_total_amount is null,old.final_total_amount,new.final_total_
amount),
    date_format(if(new.tms['1001'] is null,old.create_time,new.tms['1001']),
'yyyy-MM-dd')
from
(
    select
        id,
        order_status,
        user_id,
        out_trade_no,
        create_time,
        payment_time,
        cancel_time,
        finish_time,
        refund_time,
        refund_finish_time,
        province_id,
        activity_id,
        original_total_amount,
        benefit_reduce_amount,
        feight_fee,
        final_total_amount
    from ${APP}.dwd_fact_order_info
    where dt
    in
    (
        select
          date_format(create_time,'yyyy-MM-dd')
        from ${APP}.ods_order_info
        where dt='$do_date'
    )
)old
full outer join
(
    select
        info.id,
        info.order_status,
        info.user_id,
        info.out_trade_no,
        info.province_id,
        act.activity_id,
        log.tms,
        info.original_total_amount,
        info.benefit_reduce_amount,
        info.feight_fee,
        info.final_total_amount
    from
    (
        select
            order_id,
            str_to_map(concat_ws(',',collect_set(concat(order_status,'=',operate_
time))),',','=') tms
        from ${APP}.ods_order_status_log
        where dt='$do_date'
        group by order_id
    )log
    join
    (
        select * from ${APP}.ods_order_info where dt='$do_date'
    )info
    on log.order_id=info.id
    left join
    (
        select * from ${APP}.ods_activity_order where dt='$do_date'
    )act
    on log.order_id=act.order_id
)new
on old.id=new.id;


insert overwrite table ${APP}.dwd_dim_user_info_his_tmp
select * from 
(
    select 
        id,
        name,
        birthday,
        gender,
        email,
        user_level,
        create_time,
        operate_time,
        '$do_date' start_date,
        '9999-99-99' end_date
    from ${APP}.ods_user_info where dt='$do_date'

    union all 
    select 
        uh.id,
        uh.name,
        uh.birthday,
        uh.gender,
        uh.email,
        uh.user_level,
        uh.create_time,
        uh.operate_time,
        uh.start_date,
        if(ui.id is not null  and uh.end_date='9999-99-99', date_add(ui.dt,-1), uh.end_date) end_date
    from ${APP}.dwd_dim_user_info_his uh left join 
    (
        select
            *
        from ${APP}.ods_user_info
        where dt='$do_date'
    ) ui on uh.id=ui.id
)his 
order by his.id, start_date;

insert overwrite table ${APP}.dwd_dim_user_info_his select * from ${APP}.dwd_
dim_user_info_his_tmp;
"

sql2="
insert overwrite table ${APP}.dwd_dim_base_province
select 
    bp.id,
    bp.name,
    bp.area_code,
    bp.iso_code,
    bp.region_id,
    br.region_name
from ${APP}.ods_base_province bp
join ${APP}.ods_base_region br
on bp.region_id=br.id;
"

case $1 in
"first"){
    $hive -e "$sql1"
    $hive -e "$sql2"
};;
"all"){
    $hive -e "$sql1"  
};;
esac
  1. 增加脚本执行权限
sh
[jack@hadoop102 bin]$ chmod 777 ods_to_dwd_db.sh