Paxos 算法
1. 拜占庭将军问题
拜占庭将军问题是一个协议问题,拜占庭帝国军队的将军们必须全体一致的决定是否攻击某一支敌军。
问题是这些将军在地理上是分隔开来的,并且将军中存在叛徒。叛徒可以任意行动以达到以下目标:欺骗某些将军采取进攻行动;促成一个不是所有将军都同意的决定,如当将军们不希望进攻时促成进攻行动;或者迷惑某些将军,使他们无法做出决定。如果叛徒达到了这些目的之一,则任何攻击行动的结果都是注定要失败的,只有完全达成一致的努力才能获得胜利。
2. Paxos算法简介
Paxos算法:一种基于消息传递且具有高度容错特性的一致性算法。
Paxos算法解决的问题:就是如何快速正确的在一个分布式系统中对某个数据值达成一致,并且保证不论发生任何异常,都不会破坏整个系统的一致性。
3. Paxos算法说明
在一个Paxos系统中,首先将所有节点划分为Proposer(提议者),Acceptor(接受者),和Learner(学习者)。(注意:每个节点都可以身兼数职)。 一个完整的Paxos算法流程分为三个阶段:
- Prepare准备阶段
- Proposer向多个Acceptor发出Propose请求
- Acceptor针对收到的Propose请求进行Promise(承诺)
- Accept接受阶段
- Proposer收到多数Acceptor承诺的Promise后,向Acceptor发出Propose请求
- Acceptor针对收到的Propose请求进行Accept处理
- Learn学习阶段
- Proposer将形成的决议发送给所有Learners
4. Paxos算法流程
- Prepare: Proposer生成全局唯一且递增的Proposal ID,向所有Acceptor发送Propose请求,这里无需携带提案内容,只携带Proposal ID即可。
- Promise: Acceptor收到Propose请求后,做出"两个承诺,一个应答"。
➢ 不再接受Proposal ID小于等于(注意:这里是<= )当前请求的Propose请求。
➢ 不再接受Proposal ID小于(注意:这里是< )当前请求的Accept请求。
➢ 不违背以前做出的承诺下,回复已经Accept过的提案中Proposal ID最大的那个提案的Value和Proposal ID,没有则返回空值。 - Propose: Proposer收到多数Acceptor的Promise应答后,从应答中选择Proposal ID最大的提案的Value,作为本次要发起的提案。如果所有应答的提案Value均为空值,则可以自己随意决定提案Value。然后携带当前Proposal ID,向所有Acceptor发送Propose请求。
- Accept: Acceptor收到Propose请求后,在不违背自己之前做出的承诺下,接受并持久化当前Proposal ID和提案Value。
- Learn: Proposer收到多数Acceptor的Accept后,决议形成,将形成的决议发送给所有Learner。
5. Paxos算法举例
- 情况1:最顺利的情况,只有一个提出提案。 有A1, A2, A3, A4, A5 5位议员,就税率问题进行决议。
- A1发起1号Proposal的Propose,等待Promise承诺;
- A2-A5回应Promise;
- A1在收到两份回复时就会发起税率10%的Proposal;
- A2-A5回应Accept;
- 通过Proposal,税率10%。
- 情况2:有多个提案者,但是他们错开提案。
现在我们假设在A1提出提案的同时, A5决定将税率定为20%。
- A1,A5先后发起Propose(序号分别为1,2)
- A2承诺A1,A4承诺A5,A3行为成为关键。
- A3先收到A1消息,承诺A1。
- A1发起Proposal(1,10%),A2,A3接受。
- 之后A3又收到A5消息,回复A1:(1,10%),并承诺A5。
- A5发起Proposal(2,20%),A3,A4接受。之后A1,A5同时广播决议。
- 情况3:有多个提案者,不巧他们同时提出提案。
现在我们假设在A1提出提案的同时, A5决定将税率定为20%。
- A1,A5同时发起Propose(序号分别为1,2)。
- A2承诺A1,A4承诺A5,A3行为成为关键。
- 情况2:A3先收到A1消息,承诺A1。之后立刻收到A5消息,承诺A5。
- A1发起Proposal(1,10%),无足够响应,A1重新Propose (序号3),A3再次承诺A1。
- A5发起Proposal(2,20%),无足够相应。A5重新Propose (序号4),A3再次承诺A5。
......(一直进行下去)
造成这种情况的原因是系统中有一个以上的Proposer,多个Proposers相互争夺Acceptor,造成迟迟无法达成一致的情况。针对这种情况,一种改进的Paxos算法被提出:从系统中选出一个节点作为Leader,只有Leader能够发起提案。这样,一次Paxos流程中只有一个Proposer,不会出现活锁的情况,此时只会出现例子中第一种情况。